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Abstract. In this paper we propose a methodology to accelerate the resolution of the so-4
called “Sorted L-One Penalized Estimation” (SLOPE) problem. Our method leverages the concept5
of “safe screening”, well-studied in the literature for group-separable sparsity-inducing norms, and6
aims at identifying the zeros in the solution of SLOPE. More specifically, we derive a set of n(n+1)

2
7

inequalities for each element of the n-dimensional primal vector and prove that the latter can be8
safely screened if some subsets of these inequalities are verified. We propose moreover an efficient9
algorithm to jointly apply the proposed procedure to all the primal variables. Our procedure has10
a complexity O(n logn + LT ) where T ≤ n is a problem-dependent constant and L is the number11
of zeros identified by the test. Numerical experiments confirm that, for a prescribed computational12
budget, the proposed methodology leads to significant improvements of the solving precision.13
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1. Introduction. During the last decades, sparse linear regression has attracted16
much attention in the field of statistics, machine learning and inverse problems. It17
consists in finding an approximation of some input vector y ∈ Rm as the linear18
combination of a few columns of a matrix A ∈ Rm×n (often called dictionary). Un-19
fortunately, the general form of this problem is NP-hard and convex relaxations have20
been proposed in the literature to circumvent this issue. The most popular instance21
of convex relaxation for sparse linear regression is undoubtedly the so-called “LASSO”22
problem where the coefficients of the regression are penalized by an ℓ1 norm, see [11].23
Generalized versions of LASSO have also been introduced to account for some possible24
structure in the pattern of the nonzero coefficients of the regression, see [2].25

In this paper, we focus on the following generalization of LASSO:26

(1.1) min
x∈Rn

P (x) ≜ 1
2∥y −Ax∥22 + λ rslope(x), λ > 027

where28

(1.2) rslope(x) ≜
n∑

k=1

γk|x|[k]29

with30

(1.3) γ1 > 0, γ1 ≥ · · · ≥ γn ≥ 0,31

and |x|[k] is the kth largest element of x in absolute value, that is32

(1.4) ∀x ∈ Rn : |x|[1] ≥ |x|[2] ≥ . . . ≥ |x|[n].33
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2 CLÉMENT ELVIRA AND CÉDRIC HERZET

Problem (1.1) is commonly referred to as “Sorted L-One Penalized Estimation”34
(SLOPE) or “Ordered Weighted L-One Linear Regression” in the literature and has35
been introduced in two parallel works [5, 49].1 The first instance of a problem of the36
form (1.1) (for some nontrivial choice of the parameters γk’s) is due to Bondell and37
Reich in [7]. The authors considered a problem similar to (1.1), named “Octagonal38
Shrinkage and Clustering Algorithm for Regression” (OSCAR), where the regulariza-39
tion function is a linear combination of an ℓ1 norm and a sum of pairwise ℓ∞ norms40
of the elements of x, that is41

(1.5) roscar(x) = β1∥x∥1 + β2

∑
j′>j

max(|x(j′)|, |x(j)|),42

for some β1 ∈ R∗
+, β2 ∈ R+. It is not difficult to see that roscar can be expressed as43

a particular case of rslope with the following choice γk = β1 + β2(n − k). We note44
that some authors have recently considered “group” versions of the SLOPE problem45
where the ordered ℓ2 norm of subsets of x is penalized by a decreasing sequence of46
parameters γk, see e.g., [9, 25,26].47

SLOPE enjoys several desirable properties which have attracted many researchers48
during the last decade. First, it was shown in several works that, for some proper49
choices of parameters γk’s, SLOPE promotes sparse solutions with some form of50
“clustering”2 of the nonzero coefficients, see e.g., [7, 21, 30, 39]. This feature has been51
exploited in many application domains: portfolio optimization [31, 47], genetics [26],52
magnetic-resonance imaging [16], subspace clustering [38], deep neural networks [50],53
etc. Moreover, it has been pointed out in a series of works that SLOPE has very54
good statistical properties: it leads to an improvement of the false detection rate (as55
compared to LASSO) for moderately-correlated dictionaries [6, 25] and is minimax56
optimal in some asymptotic regimes, see [33,40].57

Another desirable feature of SLOPE is its convexity. In particular, it was shown58
in [6, Proposition 1.1] and [48, Lemma 2] that rslope is a norm as soon as (1.3) holds.59
As a consequence, several numerical procedures have been proposed in the literature60
to find the global minimizer(s) of problem (1.1). In [6] and [51], the authors con-61
sidered an accelerated gradient proximal implementation for SLOPE and OSCAR,62
respectively. In [31], the authors tackled problem (1.1) via an alternating-direction63
method of multipliers [8]. An approach based on an augmented Lagrangian method64
was considered in [35]. In [48], the authors expressed rslope as an atomic norm and65
particularized a Frank-Wolfe minimization procedure [23] to problem (1.1). An effi-66
cient algorithm to compute the Euclidean projection onto the unit ball of the SLOPE67
norm was provided in [14]. Finally, in [10] a heuristic “message-passing” method was68
proposed.69

In this paper, we introduce a new “safe screening” procedure to accelerate the70
resolution of SLOPE. The concept of “safe screening” is well known in the LASSO71
literature: it consists in performing simple tests to identify the zero elements of the72
minimizers; this knowledge can then be exploited to reduce the problem dimension-73
ality by discarding the columns of the dictionary weighted by the zero coefficients.74
Safe screening for LASSO has been first introduced by El Ghaoui et al. in the sem-75
inal paper [24] and extended to group-separable sparsity-inducing norm in [36]. Safe76
screening has rapidly been recognized as a simple yet effective procedure to accelerate77
the resolution of LASSO, see e.g., [12,20,27–29,34,42,43,45]. The term “safe” refers to78

1We will stick to the former denomination in the following.
2More specifically, groups of nonzero coefficients tend to take on the same value.
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SAFE SCREENING RULES FOR THE SLOPE PROBLEM 3

the fact that all the elements identified by a safe screening procedure are theoretically79
guaranteed to correspond to zeros of the minimizers. In contrast, unsafe versions of80
screening for LASSO (often called “strong screening rules”) also exist, see [41]. More81
recently, screening methodologies have been extended to detect saturated components82
in different convex optimization problems, see [17,18].83

In this paper, we derive safe screening rules for SLOPE and emphasize that their84
implementation enables significant improvements of the solving precision when ad-85
dressing SLOPE with a prescribed computational budget. We note that the SLOPE86
norm is not group-separable and the methodology proposed in [36] does therefore not87
trivially apply here. Prior to this work, we identified two contributions addressing88
screening for SLOPE. In [32], the authors proposed an extension of the strong screen-89
ing rules derived in [41] to the SLOPE problem. In [3], the authors suggested a simple90
test to identify some zeros of the SLOPE solutions. Although the derivations made91
by these authors have been shown to contain several technical flaws [19], their test92
can be cast as a particular case of our result in Theorem 4.3 (and is therefore quite93
unexpectedly safe).94

The paper is organized as follows. We introduce the notational conventions used95
throughout the paper in Section 2 and recall the main concepts of safe screening for96
LASSO in Section 3. Section 4 contains our proposed safe screening rules for SLOPE.97
Section 5 illustrates the effectiveness of the proposed approach through numerical98
simulations. All technical details and mathematical derivations are postponed to Ap-99
pendices A and B.100

101

2. Notations. Unless otherwise specified, we will use the following conventions102
throughout the paper. Vectors are denoted by lowercase bold letters (e.g., x) and103
matrices by uppercase bold letters (e.g., A). The “all-zero” vector of dimension n is104
written 0n. We use symbol T to denote the transpose of a vector or a matrix. x(j)105
refers to the jth component of x. When referring to the sorted entries of a vector,106
we use bracket subscripts; more precisely, the notation x[k] refers to the kth largest107
value of x. For matrices, we use aj to denote the jth column of A. We use the108
notation |x| to denote the vector made up of the absolute value of the components of109
x. The sign function is defined for all scalars x as sign (x) = x/|x| with the convention110
sign (x) = 0. [CE: sign (0) non?] Calligraphic letters are used to denote sets (e.g., J )111
and card ( · ) refers to their cardinality. If a < b are two integers, Ja, bK is used as a112
shorthand notation for the set {a, a + 1, . . . , b}. Given a vector x ∈ Rn and a set of113
indices J ⊆ J1, nK, we let xJ be the vector of components of x with indices in J .114
Similarly, AJ denotes the submatrix of A whose columns have indices in J . A\ℓ115
corresponds to matrix A deprived of its ℓth column.116

117

3. Screening: main concepts. “Safe screening” has been introduced by El118
Ghaoui et al. in [24] for ℓ1-penalized problems:119

(3.1) min
x∈Rn

P (x) ≜ f(Ax) + λ ∥x∥1, λ > 0120

where f : Rm → R is a closed convex function. It is grounded on the following ideas.121
First, it is well-known that ℓ1-regularization favors sparsity of the minimizers of122

(3.1). For instance, if f = 1
2∥ · ∥22 and the solution of (3.1) is unique, it can be shown123

that the minimizer contains at most m nonzero coefficients, see e.g., [22, Theorem124
3.1]. Second, if some zeros of the minimizers are identified, (3.1) can be shown to be125

This manuscript is for review purposes only.



4 CLÉMENT ELVIRA AND CÉDRIC HERZET

equivalent to a problem of reduced dimension. More precisely, let L ⊆ J1, nK be a set126
of indices such that we have for any minimizer x⋆ of (3.1):127

(3.2) ∀ℓ ∈ L : x⋆
(ℓ) = 0128

and let L̄ = J1, nK\L. Then the following problem129

(3.3) min
z∈Rcard(L̄)

f(AL̄z) + λ ∥z∥1, λ > 0130

admits the same optimal value as (3.1) and there exists a simple bijection between131
the minimizers of (3.1) and (3.3). We note that x belongs to an n-dimensional space132
whereas z is a card(L̄)-dimensional vector. Hence, solving (3.3) rather than (3.1) may133
lead to dramatic memory and computational savings if card(L̄) ≪ n.134

The crux of screening consists therefore in identifying (some) zeros of the mini-135
mizers of (3.1) with marginal cost. El Ghaoui et al. emphasized that this is possible136
by relaxing some primal-dual optimality condition of problem (3.1). More precisely,137
let138

(3.4) u⋆ ∈ argmax
u∈Rm

D(u) ≜ −f∗(−u) s.t. ∥ATu∥∞ ≤ λ139

be the dual problem of (3.1), where f∗ denotes the Fenchel conjugate. Then, by140
complementary slackness, we must have for any minimizer x⋆ of (3.1):141

(3.5) ∀ℓ ∈ J1, nK : (|aTℓ u⋆| − λ)x⋆
(ℓ) = 0.142

Since dual feasibility imposes that |aTℓ u⋆| ≤ λ, we obtain the following implication:143

(3.6) |aTℓ u⋆| < λ =⇒ x⋆
(ℓ) = 0.144

Hence, if u⋆ is available, the left-hand side of (3.6) can be used to detect if the ℓth145
component of x⋆ is equal to zero.146

Unfortunately, finding a maximizer of dual problem (3.4) is generally as difficult147
as solving primal problem (3.1). This issue can nevertheless be circumvented by148
identifying some region R of the dual space (commonly referred to as “safe region”)149
such that u⋆ ∈ R. Indeed, since150

(3.7) max
u∈R

|aTℓ u| < λ =⇒ |aTℓ u⋆| < λ,151

the left-hand side of (3.7) constitutes an alternative (weaker) test to detect the zeros152
of x⋆. For proper choices of R, the maximization over u admits a simple analytical153
solution. For example, if R is a ball, that is154

(3.8) R = S(c, R) ≜ {u ∈ Rm : ∥u− c∥2 ≤ R},155

then maxu∈R |aTℓ u| = |aTℓ c|+R∥aℓ∥2 and the relaxation of (3.7) leads to156

(3.9) |aTℓ c| < λ−R∥aℓ∥2 =⇒ x⋆
(ℓ) = 0.157

In this case, the screening test is straightforward to implement since it only requires158
the evaluation of one inner product between aℓ and c.3159

3We note that the ℓ2-norm appearing in the expression of the test is usually considered as “known”
since it can be evaluated offline.
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SAFE SCREENING RULES FOR THE SLOPE PROBLEM 5

Many procedures have been proposed in the literature to construct safe spheres160
[20, 36, 46] or safe regions with refined geometries [12, 42, 44, 45]. If f∗ is a ζ-strongly161
convex function, a popular approach to construct a safe region is the so-called “GAP162
sphere” [36] whose center and radius are defined as follows:163

(3.10)
c = u

R =
√

2
ζ (P (x)−D(u))

164

where (x,u) is any primal-dual feasible couple. This approach has gained in popularity165
because of its good behavior when (x,u) is close to optimality. In particular, if f is166
proper lower semi-continuous, x = x⋆ and u = u⋆, then P (x) −D(u) = 0 by strong167
duality [4, Proposition 15.22]. In this case, screening test (3.9) reduces to (3.6) and,168
except in some degenerated cases, all the zero components of x⋆ can be identified by169
the screening test. Interestingly, this behavior also provably occurs for sufficiently170
small values of the dual gap [37, Propositions 8 and 9] and has been observed in many171
numerical experiments, see e.g., [17, 20,28,36].172

As a final remark, let us mention that the framework presented in this section173
extends to optimization problems where the (sparsity-promoting) penalty function174
describes a group-separable norm, see e.g., [13,36]. In particular, the complementary175
slackness condition (3.5) still holds (up to a minor modification), thus allowing to de-176
sign safe screening tests based on the same rationale. We note that, since the SLOPE177
penalization does not feature such a separability property, the methodology presented178
in this section does unfortunately not apply.179

180

4. Safe screening rules for SLOPE. In this section, we propose a new proce-181
dure to extend the concept of safe screening to SLOPE. Our exposition is organized as182
follows. In Subsection 4.1 we describe our working assumptions and in Subsection 4.2183
we present a family of screening tests for SLOPE (see Theorem 4.3). Each test is de-184
fined by a set of parameters {pq}q∈J1,nK and takes the form of a series of inequalities.185
We show that a simple test of the form (3.9) can be recovered for some particular186
values of the parameters {pq}q∈J1,nK, although this choice does not correspond to187
the most effective test in the general case. In Subsection 4.3, we finally propose an188
efficient numerical procedure to verify simultaneously all the proposed screening tests.189

190

4.1. Working hypotheses. In this section, we present two working assump-191
tions which are assumed to hold in the rest of the paper even when not explicitly192
mentioned.193

We first suppose that the regularization parameter λ satisfies194

(4.1) 0 < λ < λmax ≜ max
q∈J1,nK

(
q∑

k=1

∣∣ATy
∣∣
[k]
/

q∑
k=1

γk

)
.195

In particular, the hypothesis λmax > 0 is tantamount to assuming that y /∈ ker(AT).196
On the other hand, λ < λmax prevents the vector 0n from being a minimizer of the197
SLOPE problem (1.1). More precisely, it can be shown that under condition (1.3),198

(4.2) λ and {γk}nk=1 verify (4.1) ⇐⇒ 0n is not a minimizer of (1.1).199

A proof of this result is provided in Appendix A.2.200
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6 CLÉMENT ELVIRA AND CÉDRIC HERZET

Second, we assume that the columns of the dictionary A are unit-norm, i.e.,201

(4.3) ∀j ∈ J1, nK : ∥aj∥2 = 1.202

Assumption (4.3) simplifies the statement of our results in the next subsection. How-203
ever, all our subsequent derivations can be easily extended to the general case where204
(4.3) does not hold.205

206

4.2. Safe screening rules. In this section, we derive a family of safe screening207
rules for SLOPE.208

Let us first note that (1.1) admits at least one minimizer and our screening prob-209
lem is therefore well-posed. Indeed, the primal cost function in (1.1) is continuous and210
coercive since rslope is a norm (see e.g., [6, Proposition 1.1] or [48, Lemma 2]); the211
existence of a minimizer then follows from Weierstrass theorem [4, Theorem 1.29]. In212
the following, we will assume that the minimizer is unique to simplify our statements.213
Nevertheless, all our results extend to the general case where there exist more than214
one minimizer by replacing “x⋆

(ℓ) = 0” by “x⋆
(ℓ) = 0 for any minimizer of (1.1)” in all215

our subsequent statements.216
Our starting point to derive our safe screening rules is the following primal-dual217

optimality condition:218

Theorem 4.1. Let219

(4.4) u⋆ = argmax
u∈U

D(u) ≜ 1
2∥y∥

2
2 − 1

2∥y − u∥22,220

where221

(4.5) U =

{
u :

q∑
k=1

∣∣ATu
∣∣
[k]

≤ λ

q∑
k=1

γk, q ∈ J1, nK

}
.222

Then, for all integers ℓ ∈ J1, nK:223

(4.6) ∀q ∈ J1, nK :
∣∣aTℓ u⋆

∣∣+ q−1∑
k=1

∣∣AT
\ℓu

⋆
∣∣
[k]

< λ

q∑
k=1

γk =⇒ x⋆
(ℓ) = 0.224

A proof of this result is provided in Appendix B.1. We mention that, although it225
differs quite significantly in its formulation, Theorem 4.1 is closely related to [32,226
Proposition 1].4 We also note that (4.4) corresponds to the dual problem of (1.1),227
see e.g., [6, Section 2.5]. Moreover, u⋆ exists and is unique because D is a continuous228
strongly-concave function and U a closed convex set. The equality in (4.4) is therefore229
well-defined.230

Theorem 4.1 provides a condition similar to (3.6) relating the dual optimal solu-231
tion u⋆ to the zero components of the primal minimizer x⋆. Unfortunately, evaluating232
the dual solution u⋆ requires a computational load comparable to the one needed to233
solve the SLOPE problem (1.1). Similarly to ℓ1-penalized problems, tractable screen-234
ing rules can nevertheless be devised if “easily-computable” upper bounds on the235

4We refer the reader to Section SM1 of the electronic supplementary material of this paper for a
detailed description and a proof of the connection between these two results.
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left-hand side of (4.6) can be found. In particular, for any set {Bq,ℓ ∈ R}q∈J1,nK236
verifying237

(4.7) ∀q ∈ J1, nK :
∣∣aTℓ u⋆

∣∣+ q−1∑
k=1

∣∣AT
\ℓu

⋆
∣∣
[k]

≤ Bq,ℓ,238

we readily have that239

(4.8) ∀q ∈ J1, nK : Bq,ℓ < λ

q∑
k=1

γk =⇒ x⋆
(ℓ) = 0.240

The next lemma provides several instances of such upper bounds:241

Lemma 4.2. Let u⋆ ∈ S(c, R). Then ∀ℓ ∈ J1, nK and ∀q ∈ J1, nK, we have that242

Bq,ℓ ≜
∣∣aTℓ c∣∣+ q−1∑

k=p

∣∣AT
\ℓc
∣∣
[k]

+ (q − p+ 1)R+ λ

p−1∑
k=1

γk243

verifies (4.7) for any p ∈ J1, qK.244

A proof of this result is available in Appendix B.2. We note that Lemma 4.2 defines245
one particular family of upper bounds on the left-hand side of (4.7). The derivation of246
these upper bounds is based on the knowledge of a safe spherical region and partially247
exploits the definition of the dual feasible set, see Appendix B.2. We nevertheless em-248
phasize that other choices of safe regions or majorization techniques can be envisioned249
and possibly lead to more favorable upper bounds.250

Defining251

(4.9) κq,p ≜ λ

(
q∑

k=p

γk

)
− (q − p+ 1)R,252

a straightforward particularization of (4.8) then leads to the following safe screening253
rules for SLOPE:254

Theorem 4.3. Let {pq}q∈J1,nK be a sequence such that pq ∈ J1, qK for all q ∈255
J1, nK. Then, the following statement holds:256

(4.10) ∀q ∈ J1, nK :
∣∣aTℓ c∣∣+ q−1∑

k=pq

∣∣AT
\ℓc
∣∣
[k]

< κq,pq
=⇒ x⋆

(ℓ) = 0.257

We mention that the notation “pq” is here introduced to stress the fact that a different258
value of p can be used for each q in (4.10). Since q ∈ J1, nK and each parameter pq can259
take on q different values in Theorem 4.3, (4.10) thus defines n! different screening tests260

for SLOPE where n(n+1)
2 distinct inequalities are involved. We discuss two particular261

choices of parameters {pq}q∈J1,nK below and propose an efficient procedure to jointly262
evaluate all the tests defined by feasible sequences {pq}q∈J1,nK in the next section.263

Let us first consider the case where264

(4.11) ∀q ∈ J1, nK : pq = 1.265
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Fig. 1. Percentage of zero entries in x⋆ detected by the safe screening tests as a function of
R, the radius of the safe sphere. Each curve corresponds to a different implementation of the safe
screening test (4.10): pq = 1 ∀q, see (4.12) (green curve), pq = q ∀q, see (4.14) (blue curve), and
all possible choices for {pq}q∈J1,nK (orange curve). The results are generated by using the OSCAR-1
sequence for {γk}nk=1, the Toeplitz dictionary and the ratio λ/λmax = 0.5, see Subsection 5.1.

Screening test (4.10) then particularizes as266

(4.12) ∀q ∈ J1, nK :
∣∣aTℓ c∣∣+ q−1∑

k=1

∣∣AT
\ℓc
∣∣
[k]

< λ

(
q∑

k=1

γk

)
− qR =⇒ x⋆

(ℓ) = 0.267

Interestingly, (4.12) shares the same mathematical structure as optimality condition268
(4.6). In particular, (4.12) reduces to (4.6) when c = u⋆ and R = 0. In this case, it269
is easy to see that (4.12) is the best5 screening test within the family of tests defined270
in Theorem 4.3 since an equality occurs in (4.7).271

In practice, we may expect this conclusion to remain valid when R is “sufficiently”272
close to zero. This behavior is illustrated in Figure 1. The figure represents the pro-273
portion of zeros entries of x⋆ detected by screening test (4.10) for different “qualities”274
of the safe region and different choices of parameters {pq}q∈J1,nK. We refer the reader275
to Subsection 5.1 for a detailed description of the simulation setup. The center of276
the safe sphere used to apply (4.10) is assumed to be equal (up to machine preci-277
sion) to u⋆ and the x-axis of the figure represents the radius R of the sphere region.278
The green curve corresponds to test (4.12); the orange curve represents the screen-279
ing performance achieved when test (4.10) is implemented for all possible choices for280
{pq}q∈J1,nK. We note that, as expected, the green curve attains the best screening281
performance as soon as R becomes close to zero.282

At the other extreme of the spectrum, another case of interest reads as:283

(4.13) ∀q ∈ J1, nK : pq = q.284

Using our initial hypothesis (1.3), the screening test (4.10) rewrites6285

(4.14) |aTℓ c| < λγn −R =⇒ x⋆
(ℓ) = 0.286

Interestingly, this test has the same mathematical structure as (3.9) with the exception287
that λ is multiplied by the value of the smallest weighting coefficient γn. In particular,288

5In the following sense: if test (4.10) passes for some choice of the parameters {pq}q∈J1,nK, then
test (4.12) also necessarily succeeds.

6 More precisely, (4.10) reduces to “∀q ∈ J1, nK : |aT
ℓ c| < λγq −R =⇒ x⋆

(ℓ)
= 0” which, in view

of (1.3), is equivalent to (4.14).
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if γk = 1 ∀k ∈ J1, nK SLOPE reduces to LASSO and test (4.14) is equivalent to (3.9);289
Theorem 4.3 thus encompasses standard screening rule (3.9) for LASSO as a particular290
case. The following result emphasizes that (4.14) is in fact the best screening rule291
within the family of tests defined by Theorem 4.3 when γk = 1 ∀k ∈ J1, nK:292

Lemma 4.4. If γk = 1 ∀k ∈ J1, nK and test (4.10) passes for some choice of293
parameters {pq}q∈J1,nK, then test (4.14) also succeeds.294

A proof of this result is available in Appendix B.3.295
As a final remark, let us mention that, although we just emphasized that some296

choices of parameters {pq}q∈J1,nK can be optimal (in terms of screening performance)297
in some situations, no conclusion can be drawn in the general case. In particular, we298
found in our numerical experiments that the best choice for {pq}q∈J1,nK depends on299
many factors: the weights {γk}nk=1, the radius of the safe sphere R, the nature of the300
dictionary, the atom to screen, etc. This is illustrated in Fig. 1: we see that the blue301
and green curves deviate from the orange curve for certain values of R, that is the302
best screening performance is not necessarily achieved for pq = 1 or pq = q ∀q ∈ J1, nK.303

304

4.3. Efficient implementation. Since the best values for {pq}q∈J1,nK cannot305
be foreseen, it is desirable to evaluate the screening rule (4.10) for any choice of these306
parameters. Formally, this ideal test reads:307

(4.15) ∀q ∈ J1, nK,∃pq ∈ J1, qK :
∣∣aTℓ c∣∣+ q−1∑

k=pq

∣∣AT
\ℓc
∣∣
[k]

< κq,pq
=⇒ x⋆

(ℓ) = 0.308

Since verifying this test for a given index ℓ involves the evaluation of O(n2) inequali-309
ties, a brute-force evaluation of (4.15) for all atoms of the dictionary requires O(n3)310
operations. In this section, we present a procedure to perform this task with a com-311
plexity scaling as O(n log n+ TL) where T ≤ n is some problem-dependent constant312
(to be defined later on) and L is the number of atoms of the dictionary passing test313
(4.15). Our procedure is summarized in Algorithms 4.1 and 4.2, and is grounded on314
the following nesting properties.315

316
Nesting of the tests for different atoms. We first emphasize that there exists an317

implication between the failures of test (4.15) for some group of indices. In particular,318
the following result holds:319

Lemma 4.5. Let Bq,ℓ be defined as in Lemma 4.2 and assume that320

(4.16)
∣∣aT1 c∣∣ ≥ . . . ≥

∣∣aTnc∣∣.321

Then ∀q ∈ J1, nK:322

(4.17) ℓ < ℓ′ =⇒ Bq,ℓ ≥ Bq,ℓ′ .323

A proof of this result is provided in Appendix B.4. Lemma 4.5 has the following324
consequence: if (4.16) holds, the failure of test (4.15) for some ℓ′ ∈ J2, nK implies the325
failure of the test for any index ℓ ∈ J1, ℓ′ − 1K. This immediately suggests a backward326
strategy for the evaluation of (4.15), starting from ℓ = n and going backward to327
smaller indices. This is the sense of the main recursion in Algorithm 4.1.328

We note that hypothesis (4.16) can always be verified by a proper reordering of329
the elements of |ATc|. This can be achieved by state-of-the-art sorting procedures330
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Algorithm 4.1 Fast implementation of SLOPE screening test (4.15)
Require: radius R ≥ 0, sorted elements {|ATc|[k]}nk=1

1: L = ∅ {Set of screened atoms: init}
2: ℓ = n {Index of atom under testing: init}
3: Evaluate {g(p)}np=1, {p⋆(q)}nq=1, {q⋆(k)}nk=1

4: run = 1

5: while run == 1 and ℓ > 0 do
6: test = Algorithm 4.2(R,ℓ,{g(p)}np=1,{p⋆(q)}nq=1,{q⋆(k)}nk=1)
7: if test == 1 then
8: L = L ∪ {ℓ}
9: ℓ = ℓ− 1

10: else
11: run = 0 {Stop testing as soon as one atom does not pass the test}
12: end if
13: end while
14: return L (Set of indices passing test (4.15))

with a complexity of O(n log n). Therefore, in the sequel we will assume that (4.16)331
holds even if not explicitly mentioned.332

333
Nesting of some inequalities. We next show that the number of inequalities to be334

verified may possibly be substantially smaller than O(n2). We first focus on the case335
“ℓ = n” and then extend our result to the general case “ℓ < n”.336

Let us first note that under hypothesis (4.16):337

(4.18) ∀k ∈ J1, n− 1K : |AT
\nc|[k] = |AT

\nc|(k),338

that is the kth largest element of |AT
\nc| is simply equal to its kth component. The339

particularization of (4.15) to ℓ = n can then be rewritten as:340

(4.19) ∀q ∈ J1, nK,∃pq ∈ J1, qK :
∣∣aTnc∣∣ < τq,pq

341

where τq,p is defined ∀q ∈ J1, nK and p ∈ J1, qK as342

(4.20) τq,p ≜ κq,p −
q−1∑
k=p

∣∣ATc
∣∣
(k)

=

q−1∑
k=p

(λγk −
∣∣ATc

∣∣
(k)

−R) + (λγq −R).343

We show hereafter that (4.19) can be verified by only considering a “well-chosen”344
subset of thresholds T ⊆ {τq,p : q ∈ J1, nK, p ∈ J1, qK}, see Lemma 4.6 below.345

If346

(4.21) p⋆(q) ≜ argmax
p∈J1,qK

τq,p,347

we obviously have348

(4.22)
∣∣aTnc∣∣ < τq,p⋆(q) ⇐⇒ ∃pq ∈ J1, qK :

∣∣aTnc∣∣ < τq,pq
.349

In other words, for each q ∈ J1, nK, satisfying the inequality “
∣∣aTnc∣∣ < τq,p” for p =350

p⋆(q) is necessary and sufficient to ensure that it is verified for some pq ∈ J1, qK.351
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Motivated by this observation, we show the following items below: i) p⋆(q) can be352
evaluated ∀q ∈ J1, nK with a complexity O(n); ii) similarly to p, only a subset of353
values of q ∈ J1, nK are of interest to implement (4.19).354

Let us define the function:355

(4.23)
g : J1, nK → R

p 7→
∑n

k=p(λγk −
∣∣ATc

∣∣
(k)

−R) .356

We then have ∀q ∈ J1, nK and p ∈ J1, qK:357

(4.24) τq,p = g(p)− (g(q)− λγq)−R.358

In view of (4.24), the optimal value p⋆(q) can be computed as359

(4.25) p⋆(q) = argmax
p∈J1,qK

g(p).360

Considering (4.23), we see that the evaluation of g(p) ∀p ∈ J1, nK (and therefore p⋆(q)361
∀q ∈ J1, nK) can be done with a complexity scaling as O(n). This proves item i).362

Let us now show that only some specific indices q ∈ J1, nK are of interest to363
implement (4.19). Let364

(4.26) q⋆(k) ≜ argmax
q∈J1,kK

g(q)− λγq,365

and define the sequence {q(t)}t as366

(4.27)

{
q(1) = q⋆(n)

q(t) = q⋆(p⋆(q(t−1))− 1)
367

where the recursion is applied as long as p⋆(q(t−1)) > 1.7 We then have the following368
result whose proof is available in Appendix B.5:369

Lemma 4.6. Let T ≜
{
τq,p⋆(q) : q ∈ {q(t)}t

}
where {q(t)}t is defined in (4.27).370

Test (4.19) is passed if and only if371

(4.28) ∀τ ∈ T : |aTnc| < τ.372

Lemma 4.6 suggests the procedure described in Algorithm 4.2 (with ℓ = n) to verify373
if (4.19) is passed. In a nutshell, the lemma states that only card(T ) inequalities374
need to be taken into account to implement (4.19). We note that card(T ) ≤ n since375
only one value of p (that is p⋆(q)) has to be considered for any q ∈ J1, nK. This is376
in contrast with a brute-force evaluation of (4.19) which requires the verification of377
O(n2) inequalities.378

We finally emphasize that the procedure described in Algorithm 4.2 also applies379
to ℓ < n as long as the screening test is passed for all ℓ′ > ℓ. More specifically, if test380
(4.15) is passed for all ℓ′ ∈ Jℓ+ 1, nK, then its particularization to atom aℓ reads381

(4.29) ∀τ ∈ T ′ :
∣∣aTℓ c∣∣ < τ382

for some T ′ ⊆ T .383

7We note that the sequence {q(t)}t is strictly decreasing and thus contains at most n elements.
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Algorithm 4.2 Check if test (4.15) is passed for ℓ if it is passed for ℓ′ > ℓ

Require: radius R ≥ 0, index ℓ ∈ J1, nK, {g(p)}np=1, {p⋆(q)}nq=1,{q⋆(k)}nk=1

1: q = q⋆(ℓ)
2: test = 1
3: run = 1

4: while run == 1 do
5: τ = g(p⋆(q))− g(q) + (λγq −R) {Evaluation of current threshold, see (4.24)}
6: if |aTℓ c| ≥ τ then
7: test = 0 {Test failed}
8: run = 0 {Stops the recursion}
9: end if

10: if p⋆(q) > 1 then
11: q = q⋆(p⋆(q)− 1) {Next value of q to test, see (4.27)}
12: else
13: run = 0 {Stops the recursion}
14: end if
15: end while
16: return test (= 1 if test passed and 0 otherwise)

Indeed, if screening test (4.15) is passed for all ℓ′ ∈ Jℓ+ 1, nK, the corresponding384
elements can be discarded from the dictionary and we obtain a reduced problem385
only involving atoms {aℓ′}ℓ′∈J1,ℓK. Since (4.16) is assumed to hold, aℓ attains the386
smallest absolute inner product with c and we end up with the same setup as in the387
case “ℓ = n”. In particular, if screening test (4.15) is passed for all ℓ′ ∈ Jℓ+ 1, nK,388
Lemma 4.6 still holds for aℓ by letting q(1) = q⋆(ℓ) in the definition of the sequence389
{q(t)}t in (4.27).390

To conclude this section, let us summarize the complexity needed to implement391
Algorithms 4.1 and 4.2. First, Algorithm 4.1 requires the entries |ATc| to be sorted392
to satisfy hypothesis (4.5). This involves a complexity O(n log n). Moreover, the se-393
quences {g(p)}np=1, {p⋆(q)}nq=1, {q⋆(k)}nk=1 can be evaluated with a complexity O(n).394
Finally, the main recursion in Algorithm 4.1 implies to run Algorithm 4.2 L times,395
where L is the number of atoms passing test (4.15). Since Algorithm 4.2 requires to396
verify at most T = card (T ) inequalities, the overall complexity of the main recursion397
scales as O(LT ). Overall, the complexity of Algorithm 4.1 is therefore O(n log n+LT ).398

399

5. Numerical simulations. We present hereafter several simulation results400
demonstrating the effectiveness of the proposed screening procedure to accelerate401
the resolution of SLOPE. This section is organized as follows. In Subsection 5.1, we402
present the experimental setups considered in our simulations. In Subsection 5.2 we403
compare the effectiveness of different screening strategies. In Subsection 5.3, we show404
that our methodology enables to reach better convergence properties for a given com-405
putational budget.406

407

5.1. Experimental setup. We detail below the experimental setups used in all408
our numerical experiments.409

Dictionaries and observation vectors: New realizations of A and y are drawn for410
each trial as follows. The observation vector is generated according to a uniform411
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distribution on the m-dimensional sphere. The elements of A obey one of the following412
models:413

1. the entries are i.i.d. realizations of a centered Gaussian,414
2. the entries are i.i.d. realizations of a uniform distribution on [0, 1],415
3. the columns are shifted versions of a Gaussian curve.416

For all distributions, the columns of A are normalized to have unit ℓ2-norm. In the417
following, these three options will be respectively referred to as “Gaussian”, “Uniform”418
and “Toeplitz”.419

Regularization parameters: We consider three different choices for the sequence {γk}nk=1,420
each of them corresponding to a different instance of the well-known OSCAR prob-421
lem [7, Eq. (3)]. More specifically, we let422

(5.1) ∀k ∈ J1, nK : γk ≜ β1 + β2(n− k)423

where β1, β2 are nonnegative parameters chosen so that γ1 = 1 and γn ∈ {.9, .1, 10−3}.424
In the sequel, these parametrizations will respectively be referred to as “OSCAR-1”,425
“OSCAR-2” and “OSCAR-3”.426

427

5.2. Performance of screening strategies. We first compare the effectiveness428
of different screening strategies described in Section 4. More specifically, we evaluate429
the proportion of zero entries in x⋆ – the solution of SLOPE problem (1.1) – that can430
be identified by tests (4.12), (4.14) and (4.15) as a function of the “quality” of the431
safe sphere. These tests will respectively be referred to as “test-p=1”, “test-p=q”432
and “test-all” in the following. Figures 1 (see Subsection 4.2) and 2 represent this433
criterion of performance as a function of some parameter R0 (described below) and434
different values of the ratio λ/λmax. The results are averaged over 50 realizations.435
For each simulation trial, we draw a new realization of y ∈ R100 and A ∈ R100×300436
according to the distributions described in Subsection 5.1. We consider Toeplitz437
dictionaries in Figure 1 and Gaussian dictionaries in Figure 2.438

The safe sphere used in the screening tests is constructed as follows. A primal-439
dual solution (xa,ua) of problems (1.1) and (4.4) is evaluated with “high-accuracy”,440
i.e., with a duality GAP of 10−14 as stopping criterion. More precisely, xa is first441
evaluated by solving the SLOPE problem (1.1) with the algorithm proposed in [5].442
To evaluate ua, we extend the so-called “dual scaling” operator [24, Section 3.3] to443
the SLOPE problem: we let ua = (y −Axa)/β(y −Axa) where444

(5.2) ∀z ∈ Rm : β(z) ≜ max

(
1, max

q∈J1,nK

∑q
k=1

∣∣ATz
∣∣
[k]

λ
∑q

k=1 γk

)
.445

The couple (xa,ua) is then used to construct a sphere S(ca, Ra) in Rm whose param-446
eters are given by447

c = ua(5.3a)448

R = R0 +
√
2(P (xa)−D(ua))(5.3b)449450

where R0 is a nonnegative scalar. We note that for R0 = 0, the latter sphere corre-451
sponds to the GAP safe sphere described in (3.10).8 Hence, (5.3a) and (5.3b) define452

8We note that the GAP safe sphere derived in [36] for problem (3.1) extends to SLOPE since
1) the dual problem has the same mathematical form and 2) its derivation does not leverage the
definition of the dual feasible set.
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Fig. 2. Percentage of zero entries in the solution of the SLOPE problem identified by test-p=1
(orange lines), test-p=q (green lines) and test-all (blue lines) as a function of R0 for the Gaussian
dictionary, three values of λ/λmax and three parameter sequences {γk}nk=1.

a safe sphere for any choice of the nonnegative scalar R0 ≥ 0.453
Figure 1 concentrates on the sequence OSCAR-1 whereas each subfigure corre-454

sponds to a different choice for {γk}nk=1 in Figure 2. For the three considered screen-455
ing strategies, we observe that the detection performance decreases as R0 increases.456
Interestingly, different behaviors can be noticed. For all simulation setups, test-p=1457
reaches a detection rate of 100% whenever R0 is sufficiently small. The performance of458
test-p=q varies from one sequence to another: it outperforms test-p=1 for OSCAR-1,459
is able to detect at most 20% of the zeros for OSCAR-2 and fail for all values of R0460
for OSCAR-3. Finally, test-all outperforms quite logically the two other strategies.461
The gap in performance depends on both the considered setup and the radius R0462
but can be quite significant in some cases. For example, when λ/λmax = 0.5 and463
R0 = 10−2, there is 80% more entries passing test-all than test-p=1 for all param-464
eter sequences.465

These results may be explained as follows. First, we already mentioned in Sec-466
tion 4 that when the radius of the safe sphere is sufficiently small (that is, when R0 is467
close to zero), test-p=1 is expected to be the best9 screening test within the family468
of tests defined in Theorem 4.3. Similarly, if the SLOPE weights satisfy γ1 = γn, we469
showed in Lemma 4.4 that no test in Theorem 4.3 can outperform test-p=q. Hence,470
one may reasonably expect that this conclusion remains valid whenever γ1 ≃ γn, as471
observed for the sequence OSCAR-1 in our simulations. On the other hand, passing472
test-p=q becomes more difficult as parameter γn is small. As a matter of fact, the473
test will never pass when γn = 0. In our experiments, the sequences {γk}nk=1 are such474
that γn is close to zero for OSCAR-2 and OSCAR-3. Finally, since test-all encom-475
passes the two other tests, it is expected to always perform at least as well as the latter.476

477

5.3. Benchmarks. As far as our simulation setup is concerned, the results pre-478
sented in the previous section show a significant advantage in implementing test-all479
in terms of detection performance. However, this conclusion does not include any con-480
sideration about the numerical complexity of the tests. We note that, although the481
proposed screening rules can lead to a significant reduction of the problem dimen-482

9in the sense defined in Footnote 5 page 8.
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sions, our tests also induce some additional computational burden. In particular,483
we emphasized in Subsection 4.3 that test-all can be verified for all atoms of the484
dictionary with a complexity O(n log n + TL) where T ≤ n is a problem-dependent485
parameter and L is the number of atoms passing the test. Moreover, we also note486
that, as far as a GAP safe sphere is considered in the implementation of the tests, its487
construction requires the identification of a dual feasible point u and this operation488
typically induces a computational overhead of O(n log n) (see below for more details).489

In this section, we therefore investigate the benefits (from a “complexity-accuracy490
trade-off” point of view) of interleaving the proposed safe screening methodology491
with the iterations of an accelerated proximal gradient algorithm [5]. In all our tests,492
we consider the GAP safe sphere defined in (3.10). The primal point used in the493
construction of the GAP sphere corresponds to the current iterate of the solving494
procedure, say x(t). A dual feasible point u(t) is constructed as495

u(t) =
y −Ax(t)

β(y −Ax(t))
(5.4)496

497

where β : Rm → Rm is either defined as in (5.2) or as follows:498

(5.5) ∀z ∈ Rm : β(z) ≜ max

(
1, max

k∈J1,nK

∣∣ATz
∣∣
[k]

λγk

)
.499

(5.2) matches the standard definition of the “dual scaling” operator proposed in [24,500
Section 3.3] whereas (5.5) corresponds to the option considered in [3].10 We notice that501
the two options require to sort the elements of

∣∣ATz
∣∣ and thus lead to a complexity502

overhead scaling as O(n log n).503
In our simulations, we consider the four following solving strategies:504

1. Run the proximal gradient procedure [5] with no screening.505
2. Interleave some iterations of the proximal gradient algorithm with test-p=q506

and construct the dual feasible point with (5.2).507
3. Interleave some iterations of the proximal gradient algorithm with test-p=q508

and construct the dual feasible point with (5.5).509
4. Interleave some iterations of the proximal gradient algorithm with test-all510

and construct the dual feasible point with (5.2).511

These strategies will respectively be denoted “PG-no”, “PG-p=q”, “PG-Bao” and “PG-all”512
in the sequel. We note that PG-Bao closely matches the solving procedure considered513
in [3].514

We compare the performance of these solving strategies by resorting to Dolan-515
Moré profiles [15]. More precisely, we run each procedure for a given budget of time516
(that is the algorithm is stopped after a predefined amount of time) on I = 50 different517
instances of the SLOPE problems. In PG-p=q, PG-Bao and PG-all, the screening518
procedure is applied once every 20 iterations. Each problem instance is generated by519
drawing a new dictionary A ∈ R100×300 and observation vector y ∈ R100 according520
to the distributions described in Subsection 5.1. We then compute the following521
performance profile for each solver solv ∈ {PG-no, PG-p=q, PG-Bao, PG-all}:522

(5.6) ρsolv(δ) ≜ 100
card ({i ∈ J1, IK : di,solv ≤ δ})

I
∀δ ∈ R+523

10See companion code of [3] available at
https://github.com/brx18/Fast-OSCAR-and-OWL-Regression-via-Safe-Screening-Rules/tree/
1e08d14c56bf4b6293899ae2092a5e0238d27bf6.
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where di,solv denotes the dual gap attained by solver solv for problem instance i.524
ρsolv(δ) thus represents the (empirical) probability that solver solv reaches a dual525
gap no greater than δ for the considered budget of time.526

Figure 3 presents the performance profiles obtained for three types of dictionaries527
(Gaussian, Uniform and Toeplitz) and three different weighting sequences {γk}nk=1528
(OSCAR-1, OSCAR-2 and OSCAR-3). The results are displayed for λ/λmax = 0.5 but529
similar performance profiles have been obtained for other values of the ratio λ/λmax.530
All algorithms are implemented in Python with Cython bindings and experiments are531
run on a Dell laptop, 1.80 GHz, Intel Core i7. For each setup, we adjusted the time532
budget so that ρPG-all(10

−8) ≃ 50% for the sake of comparison.533
As far as our simulation setup is concerned, these results show that the proposed534

screening methodologies improve the solving accuracy as compared to a standard535
proximal gradient. PG-all improves the average accuracy over PG-no in all the con-536
sidered settings. The gap in performance depends on the setup but is generally quite537
significant. PG-p=q also enhances the average accuracy in most cases and performs538
at least comparably to PG-Bao in all setups. As expected, the behavior of PG-p=q539
and PG-Bao is more sensitive to the choice of the weighting sequence {γk}nk=1. In540
particular, the screening performance of these strategies decreases when γn ≃ 0 as541
emphasized in Subsection 5.2. This results in no accuracy gain over PG-no for the se-542
quence OSCAR-3 as illustrated in Figure 3. Nevertheless, we note that, even in absence543
of gain, PG-p=q and PG-Bao do not seem to significantly degrade the performance as544
compared to PG-no.545

546

6. Conclusions. In this paper we proposed a new methodology to safely identify547
the zeros of the solutions of the SLOPE problem. In particular, we introduced a fam-548
ily of screening rules indexed by some parameters {pq}nq=1 where n is the dimension of549
the primal variable. Each test of this family takes the form of a series of n inequalities550
which, when verified, imply the nullity of some coefficient of the minimizers. Inter-551
estingly, the proposed tests encompass standard “sphere” screening rule for LASSO552
as a particular case for some {pq}nq=1, although this choice does not correspond to553
the most effective test in the general case. We then introduced an efficient numerical554
procedure to jointly evaluate all the tests in the proposed family. Our algorithm has a555
complexity O(n log n+ TL) where T ≤ n is some problem-dependent constant and L556
is the number of elements passing at least one test of the family. We finally assessed557
the performance of our screening strategy through numerical simulations and showed558
that the proposed methodology leads to significant improvements of the solving ac-559
curacy for a prescribed computational budget.560

561
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565

Appendix A. Miscellaneous results. Appendix A.1 reminds some useful566
results from convex analysis applied to the SLOPE problem (1.1). Appendix A.2567
provides a proof of (4.2). In all the statements below, ∂rslope(x) denotes the subdif-568
ferential of rslope evaluated at x.569

570
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Fig. 3. Performance profiles of PG-no, PG-p=q, PG-Bao and PG-all obtained for the “Gaussian”
(column 1), “Uniform” (column 2) and “Toeplitz” (column 3) dictionaries and λ/λmax = 0.5 with a
budget of time. First row: OSCAR-1, second row: OSCAR-2 and third row: OSCAR-3.

A.1. Some results of convex analysis. We remind below several results of571
convex analysis that will be used in our subsequent derivations. The first lemma572
provides a necessary and sufficient condition for x⋆ ∈ Rn to be a minimizer of the573
SLOPE problem (1.1):574

575

Lemma A.1. x⋆ is a minimizer of (1.1) ⇐⇒ λ−1AT(y −Ax⋆) ∈ ∂rslope(x
⋆).576

577

Lemma A.1 follows from a direct application of Fermat’s rule [4, Proposition 16.4] to578
problem (1.1). We note that under condition (1.3), rslope defines a norm on Rn, see579
e.g., [6, Proposition 1.1] or [48, Lemma 2]. The subdifferential ∂rslope(x) is therefore580
well defined for all x ∈ Rn and writes as581

(A.1) ∂rslope(x) =
{
g ∈ Rn : gTx = rslope(x) and rslope,∗(g) ≤ 1

}
,582

where583

(A.2) rslope,∗(g) ≜ sup
x∈Rn

gTx s.t. rslope(x) ≤ 1584

is the dual norm of rslope, see e.g., [1, Eq. (1.4)].585
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The next lemma states a technical result which will be useful in the proof of The-586
orem 4.1 in Appendix B:587

588

Lemma A.2. If g ∈ ∂rslope(x), then xT(g−g′) ≥ 0 ∀g′ ∈ Rn s.t. rslope,∗(g
′) ≤ 1.589

590

Proof. Let g ∈ ∂rslope(x). One has591

g ∈ ∂rslope(x) ⇐⇒ x ∈ ∂r∗slope(g)592

⇐⇒ ∀g′ ∈ Rn, r∗slope(g
′) ≥ r∗slope(g) + ⟨x,g′ − g⟩(A.3)593594

where r∗slope refers to the Fenchel conjugate of rslope. The first equivalence is a conse-595
quence of [4, Theorem 16.29] and the second of the definition of the subdifferential set.596
Lemma A.2 follows by noticing that r∗slope(g

′) = 0 ∀g′ ∈ Rn such that rslope,∗(g
′) ≤ 1597

by property of r∗slope [4, Item (v) of Example 13.3].598

In the last lemma of this section, we provide a closed-form expression of the599
subdifferential and the dual norm of rslope:11600

Lemma A.3. The dual norm and the subdifferential of rslope(x) respectively write:601

rslope,∗(g) = max
q∈J1,nK

1∑q
k=1 γk

q∑
k=1

|g|[k],

∂rslope(x) =

{
g ∈ Rn : gTx = rslope(x) and ∀q ∈ J1, nK :

q∑
k=1

|g|[k] ≤
q∑

k=1

γk

}
.

602

Proof. The expression of the dual norm is a direct consequence of [48, Lemma 4].603
More precisely, the authors showed that604

(A.4) rslope,∗(g) = max
v∈

⋃n
q=1 Vq

gTv605

where Vq ≜
{

1∑q
k=1 γk

s : s ∈ {0,−1,+1}n, card
(
{j : s(j) ̸= 0}

)
= q
}

for all q ∈ J1, nK.606

The expression of rslope,∗ given in Lemma A.3 is a compact rewriting of (A.4) that607
can be obtained as follows. See first that for all q ∈ J1, nK,608

(A.5) max
v∈Vq

gTv ≤ 1∑q
k=1 γk

q∑
k=1

|g|[k].609

Second, for q ∈ J1, nK, let Jq ⊂ J1, nK be a set q distinct indices such that |g(j)| ≥ |g|[q]610

for all j ∈ Jq. Then, the upper bound in (A.5) is attained by evaluating the left-hand611
side at v ∈ Vq defined as612

(A.6) ∀j ∈ J1, nK : v(j) =

{
1∑q

k=1 γk
sign

(
g(j)

)
if j ∈ Jq

0 otherwise.
613

The expression of the subdifferential follows from (A.1) by plugging the expression of614
the dual norm in the inequality “rslope,∗(g) ≤ 1”.615

11We note that an expression of the subdifferential of rslope has already been derived in [10,
Fact A.2 in supplementary material]. However, the expression of the subdifferential proposed in
Lemma A.3 has a more compact form and is better suited to our subsequent derivations.
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A.2. Proof of (4.2). We first observe that616

(A.7) 0n is not a minimizer of (1.1) ⇐⇒ λ−1ATy /∈ ∂rslope(0n),617

as a direct consequence of Lemma A.1. Particularizing the expression of ∂rslope(x)618
in Lemma A.3 to x = 0n, the right-hand side of (A.7) can equivalently be rewritten619
as620

(A.8) ∃q ∈ J1, nK : λ−1

q∑
k=1

∣∣ATy
∣∣
[k]

>

q∑
k=1

γk.621

Since γ1 > 0 and the sequence {γk}nk=1 is nonnegative by hypothesis (1.3), (A.8) can622
also be rewritten as623

(A.9) ∃q ∈ J1, nK : λ <

∑q
k=1

∣∣ATy
∣∣
[k]∑q

k=1 γk
.624

The statement in (4.2) then follows by noticing that the right-hand side of (4.1) is a625
compact reformulation of (A.9).626

627

Appendix B. Proofs related to screening tests.628

B.1. Proof of Theorem 4.1. In this section, we provide the technical details629
leading to (4.6). Our derivation leverages the Fermat’s rule and the expression of the630
subdifferential derived in Lemma A.3.631

We prove (4.6) by contraposition. More precisely, we show that if x⋆
(ℓ) ̸= 0 for632

some ℓ ∈ J1, nK, then633

(B.1) ∃q0 ∈ J1, nK,
∣∣aTℓ u⋆

∣∣+ q0−1∑
k=1

∣∣AT
\ℓu

⋆
∣∣
[k]

= λ

q0∑
k=1

γk.634

Using Lemma A.1 and the following connection between primal-dual solutions (see [6,635
Section 2.5])636

(B.2) u⋆ = y −Ax⋆,637

we have that x⋆ is a minimizer of (1.1) if and only if638

(B.3) g⋆ ≜ λ−1ATu⋆ ∈ ∂rslope(x
⋆).639

In the rest of the proof, we will use Lemma A.2 with x = x⋆, g = g⋆ and different640
instances of vector g′ to prove our statement. First, let us define g′ ∈ Rn as641

g′
(j) = g⋆

(j) ∀j ∈ J1, nK \ {ℓ},
g′
(ℓ) = 0.

642

It is easy to verify that rslope,∗(g
′) ≤ 1. Applying Lemma A.2 then leads to643

(B.4) g⋆
(ℓ)x

⋆
(ℓ) ≥ 0.644

Since x⋆
(ℓ) is assumed to be nonzero, we then have645

(B.5) sign
(
g⋆
(ℓ)

)
sign

(
x⋆
(ℓ)

)
≥ 0,646
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where the equality holds if and only if g⋆
(ℓ) = 0.647

Second, let us consider the following choice for g′ ∈ Rn:648

g′
(j) = g⋆

(j) ∀j ∈ J1, nK \ {ℓ},
g′
(ℓ) = g⋆

(ℓ) + sδ,
(B.6)649

where650

(B.7) s ≜

{
sign

(
g⋆
(ℓ)

)
if g⋆

(ℓ) ̸= 0

sign
(
x⋆
(ℓ)

)
otherwise,

651

and δ is any nonnegative scalar such that652

(B.8) rslope,∗(g
′) ≤ 1.653

On the one hand, we note that (B.8) is verified for δ = 0. On the other hand, it654
can be seen that (B.8) is violated as soon as δ > 0 by using the following arguments.655
First, applying Lemma A.2 with g′ defined as in (B.6) leads to656

(B.9) − sx⋆
(ℓ)δ ≥ 0.657

Second, using (B.5) and the definition of s in (B.7), we must have sx⋆
(ℓ) > 0. Hence,658

satisfying inequality (B.8) necessarily implies that δ = 0. The contraposition of this659
result implies:660

(B.10) ∀δ > 0,∃q0 ∈ J1, nK :
q0∑
k=1

|g⋆|[k] + δ >

q0∑
k=1

γk661

or equivalently662

(B.11) ∃q0 ∈ J1, nK :
q0∑
k=1

|g⋆|[k] =
q0∑
k=1

γk.663

Let us next emphasize that the range of values for q0 can be restricted by choosing664
some suitable value for δ. In particular, define q′0 ∈ J1, nK as665

q′0 ≜ min
{
q ∈ J1, nK : |g⋆

(ℓ)| = |g⋆|[q]
}

(B.12)666
667

and let668

(B.13) 0 < δ < |g⋆|[q′0−1] − |g⋆|[q′0]669

with the convention g⋆
[0] = +∞. Considering g′ as defined in (B.6) with δ satisfy-670

ing (B.13), we have that the first q′0 − 1 largest absolute elements of g′ and g⋆ are671
the same. Since rslope,∗(g

⋆) ≤ 1, the inequality in the right-hand side of (B.10) can672
therefore not be verified for q0 ∈ J1, q′0 − 1K. Hence, considering δ as in (B.13), we673
have674

(B.14) ∃q0 ∈ Jq′0, nK :
q0∑
k=1

|g⋆|[k] =
q0∑
k=1

γk.675
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We finally obtain our original assertion (B.1) by using the definition of g⋆ in (B.3)676
and the fact that677

(B.15)
q0∑
k=1

∣∣ATu⋆
∣∣
[k]

=
∣∣aTℓ u⋆

∣∣+ q0−1∑
k=1

∣∣AT
\ℓu

⋆
∣∣
[k]

678

since |aTℓ u⋆| = |ATu⋆|[q′0] by definition of q′0 in (B.12) and |ATu⋆|[q′0] ≥ |ATu⋆|[q0] by679
definition of q0 ≥ q′0.680

681

B.2. Proof of Lemma 4.2. We first state and prove the following technical682
lemma:683

Lemma B.1. Let g ∈ Rn and h ∈ Rn be such that g(j) ≤ h(j) ∀j ∈ J1, nK. Then684

(B.16) g[k] ≤ h[k] ∀k ∈ J1, nK.685

Proof. Let k ∈ J1, nK. We have by definition686

h[k] = max
J⊆J1,nK

card(J )=k

min
j∈J

h(j),

≥ max
J⊆J1,nK

card(J )=k

min
j∈J

g(j),

= g[k],

687

where the inequality follows from our assumption g(j) ≤ h(j) ∀j ∈ J1, nK.688

We are now ready to prove Lemma 4.2. For any p ∈ J1, qK, we can write:689

(B.17)
∣∣aTℓ u⋆

∣∣+ q−1∑
k=1

∣∣AT
\ℓu

⋆
∣∣
[k]

=
∣∣aTℓ u⋆

∣∣+ p−1∑
k=1

∣∣AT
\ℓu

⋆
∣∣
[k]

+

q−1∑
k=p

∣∣AT
\ℓu

⋆
∣∣
[k]
.690

First, since u⋆ is dual feasible, we have:691

(B.18)
p−1∑
k=1

∣∣AT
\ℓu

⋆
∣∣
[k]

≤ λ

p−1∑
k=1

γk.692

We next show that if u⋆ ∈ S(c, R), then693

(B.19)
∣∣aTℓ u⋆

∣∣+ q−1∑
k=p

∣∣AT
\ℓu

⋆
∣∣
[k]

≤
∣∣aTℓ c∣∣+ q−1∑

k=p

∣∣AT
\ℓc
∣∣
[k]

+ (q − p+ 1)R.694

We then obtain the result stated in the lemma by combining (B.18)-(B.19).695
Inequality (B.19) can be shown as follows. First,696

(B.20) ∀j ∈ J1, nK : max
u∈S(c,R)

|aTj u| = |aTj c|+R.697

Hence,698

(B.21)
(

max
u∈S(c,R)

∣∣AT
\ℓu
∣∣)

[k]

=
∣∣AT

\ℓc
∣∣
[k]

+R699
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where the maximum is taken component-wise in the left-hand side of the equation.700
Applying Lemma B.1 with g = |AT

\ℓu| and h = maxũ∈S(c,R) |AT
\ℓũ|, we have701

(B.22) ∀u ∈ S(c, R) :
∣∣AT

\ℓu
∣∣
[k]

≤
(

max
ũ∈S(c,R)

∣∣AT
\ℓũ
∣∣)

[k]

702

and therefore703

(B.23) max
u∈S(c,R)

(∣∣AT
\ℓu
∣∣
[k]

)
≤
(

max
u∈S(c,R)

∣∣AT
\ℓu
∣∣)

[k]

.704

Combining these results leads to705

∣∣aTℓ u⋆
∣∣+ q−1∑

k=p

∣∣AT
\ℓu

⋆
∣∣
[k]

≤ max
u∈S(c,R)

∣∣aTℓ u∣∣+ q−1∑
k=p

∣∣AT
\ℓu
∣∣
[k]


≤ max

u∈S(c,R)

∣∣aTℓ u∣∣+ q−1∑
k=p

max
u∈S(c,R)

(∣∣AT
\ℓu
∣∣
[k]

)

≤ max
u∈S(c,R)

∣∣aTℓ u∣∣+ q−1∑
k=p

(
max

u∈S(c,R)

∣∣AT
\ℓu
∣∣)

[k]

≤
∣∣aTℓ c∣∣+ q−1∑

k=p

∣∣AT
\ℓc
∣∣
[k]

+ (q − p+ 1)R.

706

B.3. Proof of Lemma 4.4. We want to show that if test (4.10) is passed for707
some {pq}q∈J1,nK, then test (4.14) is also passed when γk = 1 ∀k ∈ J1, nK.708

Assume (4.10) holds for some {pq}q∈J1,nK, that is ∀q ∈ J1, nK, ∃pq ∈ J1, qK such709
that710

(B.24)
∣∣aTℓ c∣∣+ q−1∑

k=pq

∣∣AT
\ℓc
∣∣
[k]

< κq,pq
,711

where κq,p ≜ λ
(∑q

k=p γk

)
− (q − p + 1)R. Considering the case “q = 1”, we have712

p1 = 1, κ1,1 = λγ1 −R and (B.24) thus particularizes to713

(B.25)
∣∣aTℓ c∣∣ < λγ1 −R.714

Since γk = 1 ∀k ∈ J1, nK by hypothesis, the latter inequality is equal to (4.14) and the715
result is proved.716

717

B.4. Proof of Lemma 4.5. We prove the result by showing that ∀q ∈ J1, nK718
the sequence {Bq,ℓ}ℓ∈J1,nK is non-increasing. To this end, we first rewrite Bq,ℓ in a719
slightly different manner, easier to analyze. Let720

(B.26)
Cq,p ≜ (q − p+ 1)R+ λ

(∑p−1
k=1 γk

)
∀q ∈ J1, nK,∀p ∈ J1, qK

σq ≜
∑q

k=1 |aTk c| ∀q ∈ J0, nK
721
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with the convention σ0 ≜ 0. Using these notations and hypothesis (4.16), Bq,ℓ can be722
rewritten as723

Bq,ℓ − Cq,p =
∣∣aTℓ c∣∣+ q−1∑

k=1

∣∣AT
\ℓc
∣∣
(k)

−
p−1∑
k=1

∣∣AT
\ℓc
∣∣
(k)

(B.27)724

=


|aTℓ c|+ σq−1 − σp−1 if q < ℓ

σq − σp−1 if p− 1 < ℓ ≤ q

|aTℓ c|+ σq − σp if ℓ ≤ p− 1.

(B.28)725

726

We next show that ∀q ∈ J1, nK the sequence {Bq,ℓ}ℓ∈J1,nK is non-increasing. We first727
notice that Cq,p does not depend on ℓ and we can therefore focus on (B.28) to prove728
our claim. Using the fact that |aTℓ c| ≥ |aTℓ+1c| by hypothesis, we immediately obtain729
that Bq,ℓ ≥ Bq,ℓ+1 whenever ℓ /∈ {p − 1, q}. We conclude the proof by treating the730
cases “ℓ = p− 1” and “ℓ = q” separately.731

If ℓ = q we have from (B.28):732

(B.29) Bq,ℓ+1 −Bq,ℓ = |aTq+1c|+ σq−1 − σq = |aTq+1c| − |aTq c| ≤ 0,733

where the last inequality holds true by virtue of (4.16).734
If ℓ = p− 1 (and provided that p ≥ 2) the same rationale leads to735

(B.30) Bq,ℓ+1 −Bq,ℓ = |aTp c| − |aTp−1c| ≤ 0.736

737

B.5. Proof of Lemma 4.6. The necessity of (4.28) can be shown as follows.738
Assume |aTnc| ≥ τ for some τ ∈ T and let q ∈ J1, nK be such that τ = τq,p⋆(q). From739
(4.22) we then have740

(B.31) ∀p ∈ J1, qK : |aTnc| ≥ τq,p741

and test (4.19) therefore fails.742
To prove the sufficiency of (4.28), let us first notice that the definition of τq,p given743

in (4.24) can be naturally extended to any arbitrary couple of indices q, p ∈ J1, nK,744
i.e.,745

(B.32) ∀q, p ∈ J1, nK : τq,p = g(p)− (g(q)− λγq)−R.746

On the other hand, the index q(1) has been defined as747

(B.33) q(1) ≜ q⋆(n) = argmax
q∈J1,nK

g(q)− λγq,748

see (4.26) and (4.27). Combining (B.32) and (B.33), one obtains ∀p ∈ J1, nK:749

(B.34) τq(1),p = argmin
q∈J1,nK

τq,p.750

In particular, letting p = p(1), we have751

(B.35) ∀q ∈ Jp(1), nK : τq(1),p(1) ≤ τq,p(1) .752

Hence,753

(B.36) |aTnc| < τq(1),p(1) =⇒ ∀q ∈ Jp(1), nK : |aTnc| < τq,p(1) .754
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In other words, satisfying the left-hand side of (B.36) implies that test (4.19) is verified755
for each q ∈ Jp(1), nK.756

We can apply the same reasoning iteratively to show that ∀t ∈ J1, card (T )K:757

(B.37) |aTnc| < τq(t),p(t) =⇒ ∀q ∈ Jp(t), p(t−1) − 1K : |aTnc| < τq,p(t) .758

Since p(card(T )) = 1, we obtain that (4.28) implies that (4.19) is verified ∀q ∈ J1, nK.759
760
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