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ABSTRACT

Anti-sparse coding aims at spreading the information uniformly over
representation coefficients and can be naturally expressed through
an `∞-norm regularization. This paper derives a probabilistic for-
mulation of such a problem. A new probability distribution is intro-
duced.This so-called democratic distribution is then used as a prior
to promote anti-sparsity in a linear Gaussian inverse problem. A
Gibbs sampler is designed to generate samples asymptotically dis-
tributed according to the joint posterior distribution of interest. To
scale to higher dimension, a proximal Markov chain Monte Carlo al-
gorithm is proposed as an alternative to Gibbs sampling. Simulations
on synthetic data illustrate the performance of the proposed method
for anti-sparse coding on a complete dictionary. Results are com-
pared with the recent deterministic variational FITRA algorithm.

Index Terms— Anti-sparse representation, democratic distribu-
tion, inverse problem.

1. INTRODUCTION

Sparse representations have been widely advocated for regularizing
ill-posed inverse problems. Conversely, spreading the information
uniformly over a frame is a desirable property in various applica-
tions, e.g., to design robust analog-to-digital conversion schemes
[1] or to reduce the peak-to-average power ratio (PAPR) in multi-
carrier transmissions [2]. A similar problem has been addressed in
[3] where the Kashin’s representation of a given vector over a tight
frame is introduced as the expansion with the smallest possible dy-
namic range. The underlying optimization problem which consists
of minimizing the maximum magnitude of the representation coef-
ficients for an upper-bounded `2-reconstruction error, have been in-
vestigated in depth [4, 5]. In these latest contributions, the optimal
expansion is called the democratic representation. In [6], the con-
strained signal representation problems considered in [3] and [5] are
converted into their penalized counterpart. More precisely, the so-
called spread or anti-sparse representations result from a variational
optimization problem where the admissible range of the coefficients
has been penalized through a `∞-norm

min
x∈RN

1

2σ2
‖y −Hx‖22 + λ ‖x‖∞ . (1)

In (1), H defines the M × N coding matrix and σ2 stands for the
variance of the residual resulting from the approximation. Besides,
recent applications have capitalized on these latest theoretical and al-
gorithmic advances, including approximate nearest neighbour search
[7] and PAPR reduction [8].
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The present article attempts to derive a Bayesian formulation of
the anti-sparse coding problem (1) considered in [6]. Bayesian in-
ference allows fully unsupervised methods to be derived, e.g., by
including nuisance parameters and other hyperparameters into the
Bayesian model. Moreover, it permits to consider a wide range of
Bayesian estimators, beyond the standard penalized-maximum like-
lihood solution associated with (1). To the best of our knowledge,
no such probabilistic anti-sparse representation has been proposed
yet. The contributions are threefold. First, a new probability density
function (pdf), named democratic distribution, is introduced. Then,
this pdf is resorted to as a prior distribution in a linear Gaussian
inverse problem to build a probabilistic counterpart of the problem
in (1), under the maximum a posteriori (MAP) paradigm. Finally,
two instances of Markov chain Monte Carlo (MCMC) algorithms are
derived to generate samples asymptotically distributed according to
the resulting posterior distribution. These samples are subsequently
used to approximate various Bayesian estimators.

The paper is organized as follows. Section 2 introduces the
democratic pdf and its corresponding conditional distributions. For
sake of briefness, the proofs and complementary properties associ-
ated with this distribution have been omitted but can be found in
[9]. Section 3 presents the proposed hierarchical Bayesian model
for anti-sparse coding, as well as two inference algorithmic schemes.
Section 4 illustrates the performance of the proposed methods on nu-
merical experiments. Conclusions are reported in Section 5.

2. THE DEMOCRATIC DISTRIBUTION

The `∞-norm penalty evoked in (1) can be used to design a new
probability distribution belonging to the exponential family, namely
the democratic distribution. More precisely, x ∈ RN is said to be
distributed according to the democratic distribution with parameter
λ, i.e., x ∼ DN (λ), if its corresponding pdf is

f (x|λ) = λN

2NN !
exp

(
−λ ‖x‖∞

)
. (2)

For illustration, the democratic pdf D2(3) is depicted in Fig. 1.

2.1. Conditional distributions

The `∞-norm in the exponential term implicitly generates a partition
of RN composed of N double-cones Cn, where the nth component
is dominant. More precisely, each cone Cn is defined by

Cn ,
{
x = [x1, . . . , xN ]T ∈ RN : ∀j 6= n, |xj | < |xn|

}
. (3)

Intrinsic symmetry properties of the democratic distribution lead to a
straightforward equiprobability of having a democratic vector which
belongs to any of these cones, i.e.,

P [x ∈ Cn] =
1

N
, ∀n ∈ {1, . . . , N} . (4)



Fig. 1. The democratic pdf DN (λ) for N = 2 and λ = 3.

As a consequence, conditioning on each x ∈ Cn leads to ex-
plicit conditional distributions for its components. More particu-
larly, the conditional distributions of the so-called dominant and non-
dominant components of x ∼ DN (λ) are, respectively,

xn|x\n,x ∈ Cn ∼
λ

2
e
−λ

(
|xn|−‖x\n‖∞

)
1R\In(xn) (5)

xn|x\n,x 6∈ Cn ∼ U (In) (6)

where x\n denotes the vector x whose nth component has been re-
moved and In ,

(
−
∥∥x\n∥∥∞ , ∥∥x\n∥∥∞). Finally, Eq. (4), (5) and (6)

can be used to derive the conditional distribution of one component
given the others, by marginalizing out the event that x belongs to the
cone Cn, leading to

p
(
xn|x\n

)
= (1− cn)

1

2
∥∥x\n∥∥∞ 1In(xn)

+ cn
λ

2
e
−λ

(
|xn|−‖x\n‖∞

)
1R\In(xn) (7)

where
cn , P

[
x ∈ Cn|x\n

]
=

1

1 + λ
∥∥x\n∥∥∞ . (8)

In other words, the conditional distribution of one component is a
mixture of one uniform distribution over In and two shifted expo-
nential distributions over R\In. This result can be exploited to de-
sign a random variate generator through the use of a Gibbs sampling
scheme [9]. It opens the door to strategies for coefficient-wise sam-
pling according to a posterior distribution resulting from a demo-
cratic prior. This will be exploited in Section 3.

2.2. Proximal operator of the negative log-pdf

The democratic pdf can be written as f(x) ∝ exp (−g(x)) with
g(x) = λ ‖x‖∞. The proximal operator of g with parameter δ is
defined by

proxδg(x) = argmin
u∈RN

λ ‖u‖∞ +
1

2δ
‖x− u‖22. (9)

Up to authors’ knowledge, this minimization does not have any
closed-form solution. Nevertheless, the exact solution can be com-
puted with low computational cost, as detailed in [9]. Thus, fol-
lowing the strategy in [10], this proximal operator can be resorted
to implement a Monte Carlo algorithm to draw samples from the
democratic distribution. This strategy will be also exploited in Sec-
tion 3 to sample according to a posterior distribution resulting from
a democratic prior.

3. BAYESIAN SPARSE CODING

This section describes a Bayesian formulation of the model underly-
ing the problem described by (1).

3.1. Hierarchical Bayesian model

Likelihood Function : Let y = [y1 . . . yM ]T denote an observed
measurement vector. These observations are assumed to be related to
an unknown description vector x = [x1 . . . xN ]T through a known
coding matrix H according to the linear model

y = Hx+ e. (10)
The residual vector e = [e1 . . . eN ]T is assumed to be distributed
according to the multivariate Gaussian distribution N (0M , σ

2IM ).
The Gaussian property of the additive residual term yields the fol-
lowing likelihood function

f(y|x, σ2) =

(
1

2πσ2

)M
2

exp

[
− 1

2σ2
‖y −Hx‖22

]
. (11)

Description vector prior : The democratic distribution introduced
in Section 2 is used as the prior distribution of the N -dimensional
unknown vector x to promote anti-sparsity

x | λ ∼ DN (λ). (12)
In what follows, the hyperparameter λ is set as λ = Nµ, where µ is
assumed to be unknown. This choice allows the hyperparameter to
scale with the problem dimension, see [9].
Residual variance prior : A noninformative Jeffreys prior distribu-
tion is chosen for the residual variance σ2

f
(
σ2) ∝ 1

σ2
. (13)

Democratic parameter prior : A conjugate Gamma distribution is
chosen as a prior for µ

f (µ) ∝ µae−bµ (14)
where values of a and b are chosen to obtain a flat prior (e.g., a =
b = 10−3).
Joint posterior distribution : The likelihood and the priors define
above allow the joint posterior distribution to be expressed according
to the hierarchical structure

f(x, σ2, µ|y) ∝ f(y|x, σ2)f(x, σ2|µ)f(µ) (15)

leading to

f(x, σ2, µ|y) ∝ µN exp

(
− 1

2σ2
‖y −Hx‖22 − µN ‖x‖∞

)
× µa−1 exp (−bµ)

(
1

σ2

)M
2

+1

1R+(σ
2).

(16)

Note that for fixed nuisance parameters λ = Nµ and σ2, deriving
the MAP estimator associated with (15) is equivalent to solve (1). In
an unsupervised framework, these unknown parameters need to be
jointly estimated from the measurements or marginalized from the
joint posterior, which yields the marginal posterior distribution

f (x|y) ∝ ‖y −Hx‖−
M
2

2

(
b+N ‖x‖∞

)−(a+N)
. (17)

The next paragraph introduces a MCMC algorithm that allows a set

of samples
{
µ(t), σ2(t),x(t)

}TMC

t=Tbi+1
to be generated according to

the posterior distribution (15). Then these samples can be used to ap-
proximate the Bayesian estimators, e.g., the minimum mean square
error (MMSE) estimator x̂MMSE = E[x|y] and the marginal MAP
(mMAP) estimator x̂mMAP maximizing (17).



3.2. Gibbs sampler

The proposed MCMC algorithm is a Gibbs sampler that consists of
successively sampling according to the conditional distributions as-
sociated with the joint distribution (15). Its main steps are described
in what follows.
Sampling the residual variance : the conditional distribution of the
residual variance is the following inverse-Gamma distribution

σ2|y,x ∼ IG
(
M

2
,
1

2
‖y −Hx‖22

)
. (18)

Sampling the democratic hyperparameter : sampling according to
f(µ|x) is achieved as follows

µ|x ∼ G(a+N, b+N ‖x‖∞) (19)

Sampling the description vector : The description vector can
be sampled component-by-component according to the following
3-mixture of truncated Gaussian distributions

xn|x\n, µ, σ2,y ∼
3∑
i=1

ωinNIin
(
µin, s

2
n

)
(20)

whereNI(·, ·) denotes the Gaussian distribution truncated on I and
I1n =

(
−∞,−

∥∥x\n∥∥∞) , I3n =
(∥∥x\n∥∥∞ ,+∞) ,

and I2n =
(
−
∥∥x\n∥∥∞ , ∥∥x\n∥∥∞) .

The probabilities ωi,n (i = 1, . . . , 3) as well as the means µi,n
(i = 1, . . . , 3) and variances s2n of these truncated Gaussian distri-
butions are given in Appendix A. Sampling according to truncated
distributions can be achieved using the strategy proposed in [11].

3.3. Proximal Metropolis Adjusted Langevin Algorithm

The proximal Metropolis adjusted Langevin algorithm (P-MALA)
[10] is a scalable alternative to the method presented in section 3.2 to
draw the full description vector x. It consists of Metropolis Hastings
moves whose proposal distribution is Gaussian with the proximal
operator of the negative log-posterior evaluated at the current point
as mean. It appears in (16) that the negative log-posterior h is given
by

h(x) =
1

2σ2
‖y −Hx‖22 + λ ‖x‖∞ . (21)

To the best of our knowledge, no closed forme solution of (21) is
available. To alleviate this problem, a first order approximation is
considered1 , as recommended in [10]

proxδ/2h (x) ≈ proxδ/2g

(
x+ δ ∇

[
1

2σ2
‖y −Hx‖22

])
(22)

where proxδ/2g is the proximal operator considered in section 2.2.
Hence, at iteration t of the main algorithm, new candidate are pro-
posed according to

x∗|x(t−1) ∼ N
(

proxδ/2h

(
x(t−1)

)
, δIN

)
(23)

and accepted as a new state x(t) with probability

α = min

1,
f
(
x∗|µ, σ2,y

)
f (x(t−1)|µ, σ2,y)

q
(
x(t−1)|x∗

)
q (x∗|x(t−1))

 (24)

where q is the pdf of the considered proposal. Following [10], δ is
tuned to achieve an acceptance rate between 40% and 60%.

1Note that a similar step is involved in the fast iterative truncation algo-
rithm (FITRA) [8], a deterministic counterpart of the proposed algorithm and
considered in the next section for comparison.

4. SIMULATION RESULTS ON SYNTHETIC DATA

Performance of the proposed algorithm has been evaluated thanks to
numerical experiments on synthetic data. More precisely, anti-sparse
codes x of dimension N = 50 are recovered from Gaussian obser-
vations y of size M = 30. The M × N coding matrix H is gener-
ated using randomly subsampled discrete Fourier transform (DFT),
since they have shown to yield representations with low `∞-norm
[5]. The mMAP and MMSE estimators discussed in paragraph 3.1
are computed from a total of TMC = 12× 103 iterations of the two
MCMC algorithms, i.e., the full Gibbs sampler and the Gibbs sam-
pler including a P-MALA step, described in paragraph 3.2, including
Tbi = 10× 103 burn-in iterations. Performances are evaluated over
50 Monte Carlo simulations and reported in terms of reconstruction
error SNRy (to measure the coding quality) and PAPR (to measure
anti-sparsity), respectively defined by

SNRy = 10 log10
‖y‖22

‖y −Hx̂‖22
(25)

PAPR =
N ‖x̂‖2∞
‖x̂‖22

∈ [1, N ] (26)

where x̂ refers to an estimator of x.
The two proposed algorithms have been compared with FITRA,

a PAPR reduction technique detailed in [8]. FITRA directly solves
(1), but in a supervised framework, since it needs the prior knowl-
edge of the two nuisance parameters λ and σ2, i.e., the product
β , 2λσ2. Consequently, 3 configurations of FITRA are consid-
ered: β = 2σ̂2

MMSEλ̂MMSE (FITRA-mmse) where σ̂2
MMSE and

λ̂MMSE denote the MMSE estimate of these parameters recovered by
the proposed algorithm, and two distinct values of β tuned to reach
either a targeted SNRy of 20dB (FITRA-snr) or a targeted PAPR of
1.5 (FITRA-papr), respectively. Finally, the algorithms have been
compared with the least-square (LS) solution as well as the MMSE
and mMAP estimates resulting from a Bayesian model based on a
Gaussian prior in place of the democratic one, to assess the interest
of the anti-sparsity promoting prior.

Table 1. SNRy and PAPR for various algorithms. Note that
SNRy > 100 dB are considered infinite.

SNRy PAPR

P-MALA mMAP 29.3 2.78
P-MALA MMSE 19.3 3.89
Gibbs mMAP 8.8 3
Gibbs MMSE 4.3 6.9
FITRA-mmse 34.4 1.69
FITRA-papr 12.8 1.5
FITRA-snr 19.9 1.71
LS ∞ 6.63
Gibbs mMAP (Gaussian) ∞ 5.92
Gibbs MMSE (Gaussian) 73.1 6.79

Table 1 shows the average results for all considered algorithms.
Among all the proposed methods, the mMAP estimate obtained with
P-MALA has reached in average the highest SNRy (29.3 dB) for the
lowest PAPR (2.78). As a comparison, tuning FITRA to reach the
same SNRy of 29.3 DB leads to a PAPR of 1.81. Conversely, the
full Gibbs sampler leads to solutions with low SNRy and high PAPR.



Fig 2 illustrates the variability of the results in terms of the compro-
mise between PAPR and SNRy. As a reference the average solu-
tions recovered by FITRA are plotted for a continuous range of the
hyperparameter β. Points corresponding to estimates from the three
Bayesian methods are also plotted. First one notices the bad results
obtained with the full Gibbs sampler which almost always yields so-
lutions with either zero or infinite SNRy. Further investigations have
shown that the non informative priors over the two hyperparameters
have not led to a compromise. Then, P- MALA produces solutions
close to the critical area determined by FITRA. While outperformed
by FITRA for a given PAPR, solutions resulting from the democratic
prior have a significantly lower PAPR than solutions resulting from
a Gaussian prior, which confirms the interest of the `∞-penalty.

Fig. 2. SNRy as a function of PAPR. The blue line is the average
results of FITRA for the 50 Monte Carlo Simulations together with
a confidence interval.

5. CONCLUSION

This paper introduces a new probability distribution, namely the
democratic distribution, which is designed to promote anti-sparsity.
Once elected as a prior over coefficient, the inference problem was
cast as a Bayesian counterpart of anti-sparse coding. A full Gibbs
sampler was designed to successively sample in an unsupervised
way all parameters according to their individual conditional poste-
rior distributions. An alternative sampler that exploits the proximal
operator in a P-MALA step was also proposed. Relevance of the two
resulting algorithms was asserted on a synthetic experiment by in-
ferring the representation of a given measurement vector on a known
and over-complete dictionary. Performances were compared to other
methods : the supervised deterministic PAPR reduction method FI-
TRA, the least-square solution and Bayesian estimators resulting
from a Gaussian prior. Despite outperformed by FITRA, the demo-
cratic prior distribution was able to promote anti-sparse solutions.
The mMAP estimator generally provided more relevant solutions
than the MMSE estimator. P-MALA has proposed more satisfying
results in terms of SNRy and PAPR for a significantly lower compu-
tational cost, and the chain has appeared more stable. Future work
will investigate the ability of P-MALA to scale to higher dimensions.

A. POSTERIOR DISTRIBUTION OF THE
REPRESENTATION COEFFICIENTS

The mean and variances of the truncated Gaussian distributions in-
volved in the mixture distribution (20) are given by

µ1n =
1

‖hn‖2
(
hTnen + σ2λ

)
µ2n =

1

‖hn‖2
(
hTnen

)
µ3n =

1

‖hn‖2
(
hTnen − σ2λ

)
s2n =

σ2

‖hn‖22

where hn denotes the nth column of H and en = y −
∑
i6=n xihi.

The weights of each mixture component are

ωin =
uin∑3
j=1 ujn

with
u1n = exp

(
µ2
1n

2s2n
+ λ

∥∥x\n∥∥∞)φµ1n,s2n

(
−
∥∥x\n∥∥∞)

u2n = exp

(
µ2
2n

2s2n

)
×
[
φµ2n,s2n

(∥∥x\n∥∥∞)− φµ2n,s2n

(
−
∥∥x\n∥∥∞)]

u3n = exp

(
µ2
3n

2s2n
+ λ

∥∥x\n∥∥∞)(1− φµ3n,s2n

(∥∥x\n∥∥∞))
where φµ,s2(·) is the cumulated distribution function of the normal
distributionN (µ, s2).
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