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ABSTRACT

Principal component analysis is a widely used technique to perform
dimension reduction. However, selecting a finite number of signifi-
cant components is essential and remains a crucial issue. Only few
attempts have proposed a probabilistic approach to derive a poste-
rior distribution of this number of significant components. This pa-
per introduces a Bayesian nonparametric model to jointly estimate
the principal components and the corresponding intrinsic dimension.
More precisely, the observations are projected onto a random or-
thogonal basis which is assigned a prior distribution defined on the
Stiefel manifold. Then the factor scores take benefit of an Indian
buffet process prior to model the uncertainty related to the number
of components. The parameters of interest as well as the nuisance
parameters are finally inferred within a fully Bayesian framework via
Monte Carlo sampling. The performances of the proposed approach
are assessed thanks to experiments conducted on various examples.

Index Terms— Bayesian inference, dimension reduction, dis-
tribution on the Stiefel manifold, Indian buffet process.

1. INTRODUCTION

Principal component analysis (PCA) is an ubiquitous tool in signal
processing and statistical data analysis. It implicitly permits a di-
mension reduction by projecting observations onto a subset of or-
thonormal vectors referred to as principal components. In its most
widely admitted formulation, PCA does not derive from a probabilis-
tic model. This can be an issue when the relevance of the selected
principal components needs to be assessed. To fill this gap, Tipping
and Bishop have demonstrated in [1] how PCA can be interpreted
as a maximum likelihood estimator of a latent factor model, where
both noise, factor and coefficients are assumed to be Gaussian dis-
tributed. The subspace to be recovered was finally inferred using an
expectation-maximization (EM) algorithm, leading to the so-called
probabilistic PCA (PPCA). Such an approach allows PCA to be per-
formed while facing with missing data [1] and also can be extended
to handle mixture of PCA [2]. However, selecting the optimal num-
ber of degrees of freedom has not be considered by these methods.

An inappropriate selection of the relevant subset of principal
components may lead to the loss of significant information, mis-
interpretation. Thus, this selection is a crucial issue when resort-
ing to PCA for dimension reduction. A few approaches have been
proposed to tackle this problem in a probabilistic framework. One
strategy consists in modeling principal components as random or-
thonormal vectors distributed over the Stiefel manifold, i.e., the set
of (tall) matrices with orthonormal columns. In [3], Minka has ex-
tended PPCA by designing a prior distribution of the latent factors
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associated with the singular value decomposition of covariance ma-
trices, which allows the posterior distribution over the subspace di-
mension to be approximated. In [4], a Stiefel manifold-based prior
combined to a prior on the number of selected components leads to
a variational approximation of the posterior.

In this work, we propose to investigate the use of Bayesian non-
parametric inference to explore the set of subspaces and derive a
posterior distribution of the intrinsic data dimension. To this aim, in-
spired by [5], the prior on the principal components is elected as
a uniform distribution over the Stiefel manifold in dimension D.
Moreover, an Indian buffet process (IBP) prior [6] is assigned to
the representation coefficients to promote a parsimonious use of the
corresponding components, implicitly performing a dimension re-
duction. The IBP can be interpreted as a distribution on the set of
potentially infinite binary matrices that penalizes large matrices. Our
purpose is to estimate an orthonormal basis of a subspace of dimen-
sion K ≤ D which is not a priori fixed but this relevant reduced
dimension will be rather automatically inferred. A Markov chain
Monte Carlo (MCMC) sampler is derived to approximate the poste-
rior distribution and compute estimates of an orthonormal basis of a
subspace of size K ≤ D. The number K of selected components
and their corresponding eigenvalues (energies) are inferred as well.

The sequel of this paper is organized as follows. Section 2 de-
scribes the proposed hierarchical Bayesian model. Section 3 de-
scribes the MCMC inference scheme. Section 4 illustrates the per-
formances of the method on numerical examples. Concluding re-
marks are finally reported in Section 5.

2. HIERARCHICAL BAYESIAN MODEL

2.1. Representation model

Let yn = [y1,n . . . yD,n]T denotes a D-dimensional observation
vector. The set of N observed vectors y1, . . . ,yN are expected to
live in a K-dimensional subspace with K ≤ D. The problem ad-
dressed in this work consists of identifying this subspace and, most
importantly, the intrinsic dimension of this subspace. To do so, the
observation vectors are assumed to be represented according to the
following latent factor model

yn = P (zn � xn) + en (1)

where P is an orthonormal basis of RD , i.e., P TP = I is the iden-
tity matrix, zn is a D-dimensional binary vector, xn is a vector of
coefficients and � denotes the Hadamard (term-wise) product. In
(1), the additive term en stands for a white Gaussian mismodeling
and/or observation noise. It is worth noting that the binary coeffi-
cients zn encodes the activation hence the relevance of the corre-
sponding coefficients in xn for the latent representation. Thus, the
term-wise product vector zn � xn would be referred to as the factor
scores in the PCA terminology.



2.2. Likelihood function

Since the noise is assumed to be a white Gaussian noise independent,
i.e., en|σ2N

(
0, σ2I

)
, the likelihood of a set of N observations as-

sumed to be a priori independent can be written as

f(Y|P ,Z,X, σ2) ∝

(2πσ2)−DN/2 exp

(
− 1

2σ2

N∑
n=1

‖yn − P (zn � xn)‖22

)
(2)

Y is the D × N matrix resulting from the concatenation of all ob-
servation vectors, Z is the binary activation matrix, X is the matrix
of representation coefficients and ‖u‖2 is the `2-norm of u.

2.3. Prior distributions

The unknown parameters associated with the likelihood function are
the orthonormal basisP , the binary matrix Z, the coefficients X and
the noise variance σ2. Let define the corresponding set of parame-
ters as θ = (P ,Z, σ2), leaving X apart for future marginalization.

Orthonormal basisP . By definition, P is an orthonormal base and
belongs to the unitary group UD . Since no information is available
a priori about any preferred direction,a uniform distribution on UD
is chosen as a prior distribution on P whose pdf with respect to the
Lebesgue measure is

f(P) =
1

Vol(UD)
1UD (P ) (3)

where the volume of the unitary group is

vol(UD) =
2Dπ

D2

2
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2
− i−1

2

) (4)

and 1A(·) denotes the indicator function on the set A. Note that a
subset of K columns of P ∈ UD belongs to the Stiefel manifold
SKD , the set of matrices with K orthonormal columns in dimension
D (see [7] for a review of statistics on the Stiefel Manifold and
corresponding sampling methods).

Indian buffet process Z. Since the observation vectors are assumed
to live in lower dimensional subspace, most of the factor scores in
the vectors zn � xn are expected to be null. To reflect this key
feature, an IBP prior is assigned to the binary latent factor activation
coefficient [8]

Z|α ∼ IBP(α). (5)

where α controls the underlying sparsity of Z. This prior promotes
a parsimonious use of the corresponding principal components pk.
Above all, it allows the relevant subspace dimension K to be not
a priori fixed and simultaneously penalizes large values of K, im-
plicitly performing dimension reduction. Indeed, the resulting prior
mean of non-zero components behaves as α logN . The regulariza-
tion effect of the IBP is complemented by the orthogonality con-
straint imposed on P , which also prevents any value of K to be
greater thanD. More specifically, the number of non-zero lines in Z
will determine the number K of active components in P to describe
observations according to the model (1).

In brief, the Indian Buffet Process (IBP) can be interpreted as
a distribution over infinite binary matrices [6, 8]. It can be used to
derive latent feature models where the number of features is a priori
unknown. The following culinary metaphor is often employed to

describe the IBP. Let consider a buffet with an infinite number of
dishes. A first customer (an observation) enters into the restaurant
and chooses K1 ∼ P(α) dishes (features). The next customer
chooses each of these dishes with probability m1/2 and then tries
a Poisson random number P(α

2
) of new dishes. Then the nth cus-

tomer tries each of these dishes with probability mk
n

, where mk is
the number of times dish k has been already chosen by previous
customers; then he tries Kn ∼ P(α

n
) new dishes. As a constructive

consequence, some dishes are very often selected while many others
are rarely chosen.

Coefficients X. Independent Gaussian prior distributions are as-
signed to the individual representation coefficient gathered in the
matrix X. This choice can be easily motivated for large N by the
central limit theorem since these coefficients are expected to re-
sult from orthogonal projections of the observed vectors onto the
identified basis. Moreover, it has the great advantage to make later
marginalization tractable analytically (see next Section). Since the
relevant quantity here is rather the ratio between the energy of each
component and the noise variance, we follow the recommendation
in [9] to set the variance of coefficients as a multiple of the noise
variance through a Zellner’s prior. Thus the prior on the coefficient
xk along component pk is

∀k ∈ N, xk|δ2k, σ2 ∼
N∏
n=1

N (0, δ2kσ
2). (6)

where the hyperparameters δ2k will be the parameters of interest
corresponding to the ratio between the eigenvalues of a classical
PCA and the noise variance.

Noise variance σ2. A conjugate inverse Gamma prior is assigned to
σ2

σ2 ∼ IG (aσ2 , bσ2) (7)

where aσ2 and bσ2 are positive hyperparameters chosen to design
a vague prior. Note that the specific choice aσ2 = bσ2 = 0 would
lead to a noninformative Jeffreys prior as in [9, 10]. This choice
is here prohibited since it would also lead to an improper posterior
distribution [11].

Hyperparameters. The set of hyperparameters is gathered in φ ={
δ21 , . . . , δ

2
k, α
}

. The IBP parameter α will control the number of
active latent factors while each δK determines the power of each
component pk with respect to the noise variance σ2. In this work,
we propose to include them into the Bayesian model and to esti-
mate them with the parameters of interest jointly.This hierarchical
Bayesian approach requires to define priors for these hyperparame-
ters (usually referred to as hyperpriors), which are summarized be-
low.
Scale parameters δ2k. We choose a conjugate shifted Inverse Gamma
distribution denoted by sIG. More precisely, since the power of
relevant components are expected to be at least of the order of mag-
nitude of the noise variance, the prior distribution is defined over the
set (1,+∞[ as

p
(
δ2k|aδ, bδ

)
=

b
aδ
δ

γ (aδ, 0.5bδ)

×
(

1

1 + δ2k

)aδ+1

exp

(
− bδ

1 + δ2k

)
1[1,+∞[

(
δ2k
) (8)

where γ(a, b) is the lower incomplete gamma function, aδ and bδ
are tuned to limit the weight around δ2k = 1, e.g., aδ = 1, bδ = 20.



IBP parameter α. Without any prior knowledge regarding this hy-
perparameter, a Jeffreys prior is assigned to α

p(α) ∝ 1

α
1R+(α).

3. METROPOLIS-WITHIN-GIBBS SAMPLER

The posterior distribution resulting from the hierarchical Bayesian
model described in Section 2 is too complex to derive closed-form
expressions of the Bayesian estimators associated with the param-
eters of interest, namely, the orthonormal matrix P and the binary
matrix Z selecting the relevant components. To overcome this issue,
a MCMC algorithm to generate samples asymptotically distributed
according to the marginal posterior distributions of these parame-
ters. These samples can be subsequently used to approximate the
classical Bayesian estimators, i.e., the minimum mean square error
(MMSE) and maximum a posteriori estimators. Note that other suit-
able Bayesian estimators have been proposed in [5,12] in the specific
context of subspace estimation. The proposed MCMC algorithm is
described in what follows.

3.1. Marginalized posterior distribution

A common tool to reduce the dimension of the space to be explored
while resorting to MCMC consists in marginalizing the full poste-
rior distribution with respect to some parameters. In general, the
resulting collapsed sampler exhibits faster convergence and better
mixing properties [13]. Here, benefiting from the conjugacy prop-
erty induced by the prior in (6), we propose to marginalize over the
coefficients X

p (θ|Y,φ) =

∫
RDN

p (θ,X|Y,φ) dX. (9)

This operation goes beyond calculation convenience and leads to the
following marginalized posterior distribution

p(θ,φ|Y) ∝
(

1

σ2

)ND
2

exp

(
− tr(YTY)

2σ2

)
(10)

×
K∏
k=1
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1
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)aδ+ 1
2

∑
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exp

(
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)

×
K∏
k=1

exp

[
1

2σ2

δ2k
1 + δ2k

∑
n

zk,n 〈pk,yn〉2
]
1UD (P)

× αK∏
kKn!

eα
∑
n

1
i

∏
k

(N −mk)! (mk − 1)!

N !

× (
1

σ2
)aσ2+1e

−
b
σ2

σ2 α−1

where tr(·) denotes the trace operator. This, instead of sampling
the joint posterior p (θ|Y,φ), a MCMC algorithm is designed to
sample according to (10). It consists of a Metropolis-within-Gibbs
sampler whose main steps are detailed below.

3.2. Algorithm

Sampling the binary matrix Z. Let mk,−n denote the num-
ber of observations different from n which use the latent vector
pk. The update goes in two steps (see [14]). First, observations
for which mk,−n > 0 are updated through a Gibbs sampling

step where the scale coefficient δ2k can be marginalized out. We
use a Metropolis-Hastings step to sample observations for which
mk,−n = 0, also called singletons since pk is then used by obser-
vation n only, and to sample new components. The move goes from
state ε = {κ,Psingle} to a new state ε∗ =

{
κ∗,P∗single

}
where κ is

the number of singletons (potentially 0) and Psingle , [p̃1, ..., p̃κ]
are the components associated to these singletons. The proposal
distribution in the Metropolis-Hastings step is chosen according to
the conditional model

q (κ, p̃1, . . . p̃κ) = q (κ) J (p̃1, . . . p̃κ|κ) (11)

where the following von Mises-Fisher distribution [7] is chosen as a
proposal for Psingle:

0F1(∅, D/2, 1

4
FTF) exp

(
tr(FT [p̃1, . . . p̃κ])

)
. (12)

In (12), the columns of F are the κ first eigenvectors of YYT multi-
plied by their corresponding eigenvalues and the function 0F1(·, ·, ·)
in the normalizing factor is the confluent hypergeometric function
with a matrix argument [15].

Sampling the projection matrix P . Let split the orthonormal ma-
trix P into 2 matrices, i.e., P = [PK , P̄K ], namely the matrix
PK of K active components (used by at least one observed vec-
tor) and P̄K , the matrix of unused components. Let PK\k denote
the matrix obtained by removing column pk from PK and NK\k
a matrix whose D − K + 1 columns form an orthonormal basis
in UD for the space spanned by P̄K , i.e., the orthogonal space of
span (PK). Then, given PK\k, the component pk can be written
as pk = NK\kvk. Since the prior distribution of P is uniform on
the unitary group UD , vk is uniform on the (D−K+1)-dimensional
unit sphere [7]. Therefore, by marginalizing P̄K ,

p(vk|Y,PK\k,Z, δ
2
k, σ

2) ∝ (13)

exp

(
1

2σ2

δ2k
1 + δ2k

vTNT
K\k

(
N∑
n=1

zk,ny
T
nyn

)
NK\kvk

)

where one recognizes a Bingham distribution on theD−K+1 unit
sphere, whose sampling can be efficiently conducted [7].

Sampling the scale coefficients δ2k. Thanks to the use of a conjugate
sIG shifted inverse Gamma distribution (8) as a prior, the posterior
distribution of the scale coefficients corresponding to the K active
components is

∀1 ≤ k ≤ K, δ2k|Y,Z,P , σ2 ∼ (14)

sIG

(
aδ + zTk zk, bδ +

1

2σ2

N∑
n=1

zk,n 〈pk,yn〉2
)
.

Sampling the noise variance σ2. The conditional posterior distri-
bution of the noise variance is an inverse Gamma distribution

σ2|Y,Z,P , δ2k ∼ IG
(
aσ2 +

DK

2
, (15)

bσ2 +
1

2

N∑
n=1

yTnyn −
∑
k

δ2k
1 + δ2k

zk,n 〈pk,yn〉2
)
.



4. EXPERIMENTAL RESULTS

The performances of the proposed algorithm have been evaluated on
a various simulated datasets. These datasets are generated as fol-
lows: K orthonormal directions described by a matrix PK are uni-
formly generated on the Stiefel manifold SKD ; N vectors of coeffi-
cients x1 . . .xN of dimension K are randomly generated according
to a centered Gaussian distribution with diagonal covariance matrix
(δ21σ

2, ..., δ2Kσ
2), scaled by a noise variance σ2. The scale coeffi-

cients δ2k are defined as proportional to 1/k. Finally, N observation
vectors are generated according to

yn = Pxn + en (16)

where en is an additive Gaussian noise of covariance matrix σ2I. As
an illustration, we only report here results on 2 datasets correspond-
ing to (D = 16,K = 4, N = 100) and (D = 36,K = 6, N =
500). Since all variances are scaled by the noise, only one noise
level is considered, σ2 = 0.01. For each case, we perform 20 simu-
lations and with 500 Monte Carlo iterations after a burn-in period of
100 iterations.

Fig. 1. Posterior distribution of K, for D = 16 and N = 100.

Fig. 1 shows the posterior distribution of K for D = 16 and N =
100. Despite a small number of iterations, the maximum of the
posterior histogram corresponds to the expected dimension K = 4
of the latent subspace. Note that this estimator corresponds to the
marginal maximum a posteriori estimator.

Fig. 2. Posterior distributions of the coefficients δK (left) and dis-
persion of the projection PestP (right), for D = 16 and N = 100.
The red line indicates the trues value of δ21 . . . δ2K .

Fig. 2 shows both the posterior distribution of the 8 first scale co-
efficients and the alignment of the true P with the estimated ones.
The alignment is measured by the scalar product 〈pk, p̂k〉 between
each column of P and its estimate. No ordering problem is expected
since the variances are different in all directions. It appears that scale
coefficients are correctly inferred. Inactive components (k ≥ 5)
are associated to coefficients with much lower alignment and are all

Fig. 3. Posterior distribution of K, for D = 36 and N = 500.

comparable. Inferred directions correspond to actual principal com-
ponents with an alignment typically higher than 0.8 in average.
Fig. 3 shows results obtained on the second dataset with K for D =
36, N = 500 when K = 6. Again the maximum of the posterior
distribution corresponds to the expected dimension of the latent sub-
space. Similar results are obtained from onlyN = 100 observations
except that the algorithm inferred a latent subspace of dimension 7.

Fig. 4. Posterior distributions of the coefficients δK (left) and dis-
persion of the projection PestP (right), for D = 36 and N = 500.
The red line indicates the trues value of δ21 . . . δ2K .

Fig. 4 shows the first scale coefficients and the alignment results.
As in the previous scenario, scale coefficient are correctly inferred.
All inferred principal components exhibit a strong alignment with
directions used for synthesis. These results own a general scope and
have been reproduced in numerous other settings, not reproduced
here due to lack of space.

5. CONCLUSION

This paper proposed a new Bayesian nonparametric framework to
infer the intrinsic dimension of a set of observations. The model
exploited the IBP, a sparse-promoting prior on potentially infinite
binary matrices, coupled with a uniform distribution on the set of or-
thonormal bases. A Metropolis-within-Gibbs sampler was designed
to successively sample all parameters according to their conditional
posterior distributions. As preliminary results, performances were
assessed on two synthetic datasets, demonstrating the efficiency of
the proposed method in two scenarios differing by the underlying
dimensions of observation space and latent space. Future works will
aim at extending the proposed the model towards an application-
oriented scheme such as hyperspectral unmixing, where dimension
reduction plays a key role. In particular, coupling the dimension
reduction step with the unmixing into a fully Bayesian framework
may significantly improve the unmixing performances while avoid-
ing painful selection of suitable spectral components.
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