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A response to
“Fast OSCAR and OWL Regression via Safe

Screening Rules” by Bao et al.
Clément Elvira and Cédric Herzet

I. INTRODUCTION

In this note, we discuss a recent contribution [2] of Bao et
al. which addressed the so-called “Ordered Weighted L-One
Linear Regression” (OWL) problem:

min
x∈Rn

(x) , 1
2‖y −Ax‖22 + rOWL(x) (1 - OWL)

where

rOWL(x) ,
n∑

k=1

γk|x|[k] (2)

with

γ1 > 0, γ1 ≥ · · · ≥ γn ≥ 0, (H-3)

and |x|[k] refers to the kth largest element of x in absolute
value.

In their paper, the authors extend the so-called “safe screen-
ing” methodology introduced by El Ghaoui [5] to the OWL
problem. The concept of safe screening has already been well-
studied in the literature for “sparsity-promoting” convex prob-
lems (see [6] and references therein): it consists in devising
simple “tests” that allow to detect zero entries in the solution
of an optimization problem. The terminology “safe” refers to
the fact that all the elements passing the test are guaranteed
to correspond to zeros of the solution.

Nevertheless, we emphasize in this note that, contrarily to
what is claimed by the authors, the test proposed in [2] does
not satisfy the “safe” property. In particular, we provide two
counterexamples in which the screening tests proposed in [2]
leads to the screening of some nonzero coefficients. These
counterexamples question the correctness of their result and
suggest the presence of technical flaws in their derivations.

The note is organized as follows. In Section II, we introduce
the notational conventions used throughout the document. Sec-
tion III presents the rationale of the safe screening proposed
by Bao et al. in [2] and recall their main result. Section IV
discusses the correctness of this result by leveraging two
counterexamples. All technical proofs are postponed to Ap-
pendices A and B.
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II. NOTATIONAL CONVENTIONS

We will use the following notations throughout the paper.
Vectors are denoted by lowercase bold letters (e.g., x) and
matrices by uppercase bold letters (e.g., A). The “all-zero”
(respectively “all-ones”) vector of dimension n is written 0n

(resp. 1n). Similarly, 1m×n denotes the “all-one” matrix of
Rm×n. We use symbol T to denote the transpose of a vector or
a matrix. xj refers to the jth component of x. When referring
to the sorted entries of a vector, we use bracket subscripts;
more precisely, the notation x[k] refers to the kth largest value
of x. For matrices, we use aj to denote the jth column of
A. We use the notation |x| to denote the vector made up of
the absolute value of the components of x. The sign function
is defined for all scalars x as sign (x) = x/|x| with the
convention sign (x) = 0.
Calligraphic letters are used to denote sets (e.g., J ). If a < b
are two integers, Ja, bK is used as a shorthand notation for the
set {a, a+ 1, . . . , b}.

For all x ∈ Rn and j ∈ J1, nK, r(x, j) is such that x(j) =
x[r(x,j)], that is it refers to the position of the jth entry of x
when x is sorted. For instance, if x = [2, 3, 1, 0] r(x, 1) = 2,
r(x, 2) = 1, r(x, 3) = 3 and r(x, 4) = 4. If some of the
coordinates of x are equal, we break ties arbitrarily. In the
sequel, we will refer to r as the “rank” function.

III. RATIONALE OF SAFE SCREENING RULE FOR OWL

In this section, we summarize the main ingredients ground-
ing the safe screening rules for OWL proposed in [2]. To
distinguish between our derivations and the results of [2], all
equation numbers referring to a result of the latter paper are
prefixed by “B-” (e.g., (B-7)).

The screening procedure proposed in [2] leverages the
solution of the Fenchel dual problem of OWL. In particular,
Bao et al. claim that [2, Eq. (6d)]

u? = argmax
u∈U

D(u) , − 1
2‖u‖

2
2 − uTy, (B-4)

is the (Fenchel) dual problem to (1 - OWL) where

U =
{
u ∈ Rm : ∀j ∈ J1, nK,

∣∣aTj u∣∣ ≤ γr(x?,j)

}
(B-5)

is the dual feasible set and x? ∈ Rn is a minimizer
of (1 - OWL). At this stage, let us note that u? exists and is
unique (i.e., the equality in (B-4) is well-defined) because D
is a continuous strongly-concave function and U a closed set.
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Besides, u? is connected to any minimizer x? of (1 - OWL)
through the identity

u? = y −Ax? (6)

as a consequence of standard primal-dual optimality condi-
tions [3, Th. 19.1].

We now describe the safe screening test for OWL proposed
in [2]. One easily verifies that (1 - OWL) admits at least
one minimizer so that the screening problem is well-posed.
Consider therefore a minimizer x? of (1 - OWL). Bao et al.
claim that1 [2, Eq. (11)]∣∣aT` u?

∣∣ < γr(x?,`) =⇒ x?
` = 0. (B-7)

In other words, (B-7) describes the following sufficient con-
dition for safe screening: if the inner product between the
`th column of A and u? – the maximizer of the dual prob-
lem (B-4) – is lower than some threshold, the `th entry of any
minimizer of OWL can be set to zero. We have nevertheless
identified some technical flows in the derivation of (B-7) which
prevent test (B-7) from being safe. This will be discussed in
Section IV.

We may notice that (B-7) requires the knowledge of both
u? and the ordering of a solution of OWL. On the one hand,
computing u? is usually as difficult as solving (1 - OWL). On
the other hand, the ordering of x? is obviously not known
beforehand. As a consequence, (B-7) is of poor practical
interest and Bao et al. devised a relaxed version of their test.

The relaxed test leverages the following two ingredients.
First, since γr(x?,`) ≥ γn for all index ` ∈ J1, nK by (H-3),
one immediately deduces that∣∣aT` u?

∣∣ < γn =⇒ x?
` = 0. (B-8)

Second, the knowledge of u? can be circumvented if one
has access to a couple of primal / dual feasible vectors. In
particular if x ∈ Rn and u ∈ U are known, the test simplifies
as∣∣aT` c∣∣+‖a`‖2√2(P (x)−D(u)) < γn =⇒ x?

` = 0, (B-9)

see [2, Eq. (19)]. Bao et al. then proposed to interleave the
relaxed screening test (B-9) with the iterations of several
iterative algorithms to assess its effectiveness.

IV. DISCUSSION

In this section, we discuss the arguments developped in [2]
to show the safeness of test (B-8). In particular, Bao et al.
ground their reasoning on the following optimality conditions

aTj u
? + sign

(
x?
j

)
γr(x?,j) = 0 if x?

j 6= 0 (B-10a)∣∣aTj u?
∣∣ ≤ γr(x?,j) otherwise, (B-10b)

and used the series of implications

(B-10b) =⇒ (B-7) =⇒ (B-8) (11)

1Note that the authors did not mention how to handle the design of the
rank function in presence of multiple maximizers.

to prove the safeness of (B-8). We show below that neither
(B-10b) nor (B-7) characterize the minimizers of generic OWL
problems, thus invalidating their proof of safeness.

We first provide a counterexample where a minimizer of
OWL violates (B-7):

Counterexample 1. Consider the OWL problem with dimen-
sions m,n ≥ 2, parameters y = 1m, A = 1m×n and
weighting coefficients {γk}nk=1 such that

1 ≥ γ1 > γ2 > · · · > γn > 0. (12)

In this setup, we show in Appendix A that the unique solution
x? of the OWL problem writes x? = x?1n where

x? =
mn−

∑n
k=1 γk

mn2
> 0. (13)

As a consequence of (6), we have

ATu? =

∑n
k=1 γk
n

1n. (14)

Finally, let ` ∈ J1, nK be an index such that r(x?, `) = 1.
Using (12) we obtain ∣∣aT` u?

∣∣ < γ1. (15)

Hence x?
` = 0 by (B-7) which leads to a contradiction.

Counterexample 1 describes a scenario where both the
minimizer x? of OWL and the maximizer u? of the dual
problem can be written in closed-form so that the safeness
of screening test (B-7) can be easily assessed. We note that,
although all entries of x? are positive, (at least) one entry of
x? is screened by test (B-7). This shows that implication (B-7)
is violated in this particular setup.

We next provide a counter-example showing that (B-10a)
and (B-10b) do not correctly describe the optimality condition
of (1 - OWL):

Counterexample 2. Consider the OWL problem with dimen-
sions m = n ≥ 2, parameters y = 1n, A = In the identity
matrix of Rn×n and weighting coefficients {γk}nk=1 satisfying

γ1 = 1 and γk = 0 ∀k ∈ J2, nK. (16)

Then, the OWL problem (1 - OWL) reduces to

min
x∈Rn

1
2‖1n − x‖22 + ‖x‖∞. (17)

We show in Appendix B that the solution of (17) is unique
and writes

x? =
n− 1

n
1n. (18)

One also has (as a consequence of (6))

u? =
1

n
1n. (19)

Hence, all entries of x? are positive. Yet, for all j ∈ J1, nK,

aTj u
? + sign

(
x?
j

)
γr(x?,j) ≥ 1

n > 0 (20)

which is in contradiction with (B-10a).

Similarly to Counterexample 1, Counterexample 2 describes
a simple setup where both x? and u? are unique and can
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be exhibited in closed-form. However, it appears that the
latter couple of primal-dual solutions does not satisfies the
optimality conditions derived in [2] for the OWL problem.

Prior to conclude our note, we provide some elements
regarding the fallacy in the derivation of the optimality condi-
tions (B-10a) and (B-10b). An attentive reading of [2, Section
3.1] suggests that Bao et al. implicitly assume that addressing
the following optimization problem (see [2, Eq. (8)])

min
x∈Rn

xTATu? +

n∑
k=1

γk|x|[k] (B-21)

is equivalent to solve

min
x∈Rn

xTATu? +

n∑
j=1

γr(x?,j)|xj |, (B-22)

where x? denotes a minimizer of (1 - OWL). In other words,
the authors assume that if the order of the entries (in absolute
value) of the solution of (B-21) is known, then one can
equivalently solve a simpler optimization problem that already
takes into account the permutation of the entries. Besides, the
authors did not mention how to handle the design of the rank
function in presence of multiple minimizers.

To support our disagreement with this statement, consider
again the setup described in Counterexample 2. Since all
entries of x? are equal (and positive), [1, . . . , n] is a valid
ordering. Yet, solving (B-21) is not equivalent to solving

min
x∈Rn

xTATu? + γ1|x1| (B-23)

which admits −∞ as minimum.

APPENDIX A
PROOF RELATED TO COUNTEREXAMPLE 1

In this appendix, we exhibit the (unique) solution of the
OWL problem from Counterexample 1. Our proof is organized
as follows. We first state in Section A-A a technical lemma.
We show in Section A-B that, in this example, all minimizers
of OWL have nonnegative entries. Then, we demonstrate in
Section A-C that all minimizers are proportional to the “all-
one” vector. We finally solve in Section A-D the OWL problem
and show that the minimizer is in fact unique.

In the following, we let y ∈ Rm,A ∈ Rm×n and {γk}nk=1

be defined as in Counterexample 1.

A. A technical lemma

The following results will be used in our subsequent deriva-
tions:

Lemma 1. Let u? ∈ Rm be the (unique) maximizer of the dual
problem of OWL. Then, in the setup of Counterexample 1, we
have:

1T
mu? ≥ 0. (24)

Proof. See first that the (primal) objective function P rewrites
∀x ∈ Rn as P (x) = f(Ax) + rOWL(x) and recall that rOWL

defines a norm under (H-3), see [4, Proposition 1.1]. Hence,
its Fenchel dual problem writes [1, Eq. (1.4)]

argmax
u∈Rm

D(u) = f∗(u) = 1
2‖y‖

2
2 −

1
2‖y − u‖22

s.t. r∗OWL(A
Tu) ≤ 1

(25)

where f∗ denotes the Fenchel conjugate function of f and
r∗OWL the dual norm of rOWL.

Since r∗OWL is also a norm, we have r∗OWL(A
T0m) = 0 ≤ 1

so that the vector of zeros 0m is admissible. Using the fact
that f∗ is concave and that ∇f∗(0m) = y, we have for all
u ∈ Rm:

f∗(u) ≤ f∗(0m) + yTu. (26)

Recalling that y = 1m and particularizing the latter inequality
to u = u?, we obtain

1T
mu? ≥ f∗(u?)− f∗(0m) ≥ 0 (27)

since u? is the maximizer of (25). This concludes the proof.

B. All minimizers have positive entries

Let x? ∈ Rn be a minimizer of OWL. In the following, we
show by contradiction that x?

j ≥ 0 for all j ∈ J1, nK.
Assume that there exists j0 ∈ J1, nK such that x?

j0
< 0.

Suppose moreover (without loss of generality and up to a
permutation of the indices) that the entries of x? are ordered
(in absolute value), i.e., that

|x?
1| ≥ |x?

2| ≥ · · · ≥ |x?
n| (28)

and that ∣∣x?
j0

∣∣ > ∣∣x?
j0+1

∣∣ (29)

with the convention x?
n+1 = 0. Define x′ ∈ Rn as

x′ = x? + ε1ej0 (30)

where ej0 denote the j0th vector of the canonical basis of Rn

and ε1 satisfies

0 < ε1 < min

(∣∣x?
j0

∣∣− ∣∣x?
j0+1

∣∣, 2γj0
n

)
. (31)

Note that such ε1 exists since γj0 > 0 by hypothesis and
that

∣∣x?
j0

∣∣ > ∣∣x?
j0+1

∣∣. Moreover, the ordering of x′ is also
conserved, that is

|x′1| ≥ |x′2| ≥ · · · ≥ |x′n| (32)

and
∣∣x′j0∣∣ = ∣∣x?

j0

∣∣− ε1 by design of ε1. Hence,

rOWL(x
′) = rOWL(x

?)− γj0ε1. (33)

Using the fact that Aej0 = aj0 = 1m by definition of A, we
have

P (x′) = P (x?) +
ε21
2
‖1m‖22 − ε11

T
m(y −Ax?)− γj0ε1

(6)
= P (x?) +

ε21
2
‖1m‖22 − ε11

T
mu? − γj0ε1

Lemma 1
≤ P (x?) + ε1

(n
2
ε1 − γj0

)
. (34)
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By choice of ε1 (see (31)) we have

ε1

(n
2
ε1 − γj0

)
< 0 (35)

so that P (x′) < P (x?) which is the desired contradiction.
Therefore, the entries of all minimizers of OWL have non-
negative entries.

C. All minimizers are proportional to 1n

We now show that all the solutions of OWL are proportional
to vector 1n. We again proceed by contradiction: let x? be a
minimizer of (1 - OWL) and assume that there exists j0 ∈
J1, n− 1K such that x?

j0
> x?

j0+1 (recall that all entries of
x? are nonnegative). Assume moreover and without loss of
generality (up to a permutations of the columns of A) that

x?
1 ≥ x?

2 ≥ · · · ≥ x?
n. (36)

We follow a similar rationale as in Section A-B: define the
vector x′ ∈ Rn such that

x′ = x? − ε2ej0 + ε2ej0+1 (37)

where ej0 , ej0+1 denote the j0, j0 +1th vectors of the canon-
ical basis of Rn and ε2 is a scalar such that

0 < ε2 <
x?
j0
− x?

j0+1

2
. (38)

Note that such a scalar exists since x?
j0
> x?

j0+1 by assump-
tion. See also that x′ is nonnegative by definition, and that

x′1 ≥ x′2 ≥ · · · ≥ x′n ≥ 0 (39)

Hence,

rOWL(x
′) = rOWL(x

?) + ε2(γj0+1 − γj0) < rOWL(x
?) (40)

by definition of ε2 and the sequence of weights {γk}nk=1.
Recalling that Aej = 1m for all j ∈ J1, nK, we have

P (x′) = 1
2‖y −Ax?‖22 + rOWL(x

′)
(40)
< 1

2‖y −Ax?‖22 + rOWL(x
?)

= P (x?) (41)

which leads to the desired contradiction. Hence all solutions
of OWL are proportional to the vector of ones.

D. Solving the OWL problem

Combining the results of Sections A-B and A-C, we have
that solving (1 - OWL) is equivalent2 to solve

argmin
x∈R+

P̃ (x) , 1
2‖y − xA1n‖22 + x

n∑
k=1

γk. (42)

We let the reader check that the scalar x? defined in (13)
satisfies P̃ ′(x?) = 0. Moreover, one sees that x? > 0
using the fact that γ1 ≤ 1 and (H-3). Therefore, x? satisfies
the optimality condition of (the strictly-convex) optimization
problem (42) and is therefore its unique minimizer.

2In the sense that there exists a bijection between the set of minimizers.

APPENDIX B
PROOF RELATED TO COUNTEREXAMPLE 2

Let y ∈ Rm,A ∈ Rm×n and {γk}nk=1 be defined as in
Counterexample 2. We first note that, for such choices of the
parameters, OWL reduces to (17) since rOWL simplifies as

∀x ∈ Rn, rOWL(x) = |x|[1] = max
j

({|xj |}) = ‖x‖∞. (43)

Note also that the solution of (17) exists and is unique because
the function to minimize is continuous, strongly-convex and
Rn is a nonempty, convex and closed set.

Let x? = (n − 1)/n1n. Since the function to minimize is
lower-semicontinuous, a direct application of Fermat’s rule [3,
Theorem 16.3] to problem (45) shows that x? is a minimizer
of (17) if and only if

y − x? = 1
n1n ∈ ∂‖x?‖∞. (44)

Since the function x → ‖x‖∞ defines a norm, its subdiffer-
ential is well defined for all x ∈ Rn and writes [1, Eq. (1.4)]:

∂‖x‖∞ =
{
g ∈ Rn : ‖g‖1 ≤ 1 and xTg = ‖x‖∞

}
. (45)

Let us show now that y − x? ∈ ∂‖x?‖∞. Since y − x? has
nonnegative entries, we first have

‖y − x?‖1 = 1
n‖1n‖1 = 1. (46)

See then that

x?T(y − x?) =
n− 1

n
= ‖x?‖∞. (47)

Hence, y − x? ∈ ∂‖x?‖∞ which concludes the proof.
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